# SEOEUN PLANT TECH

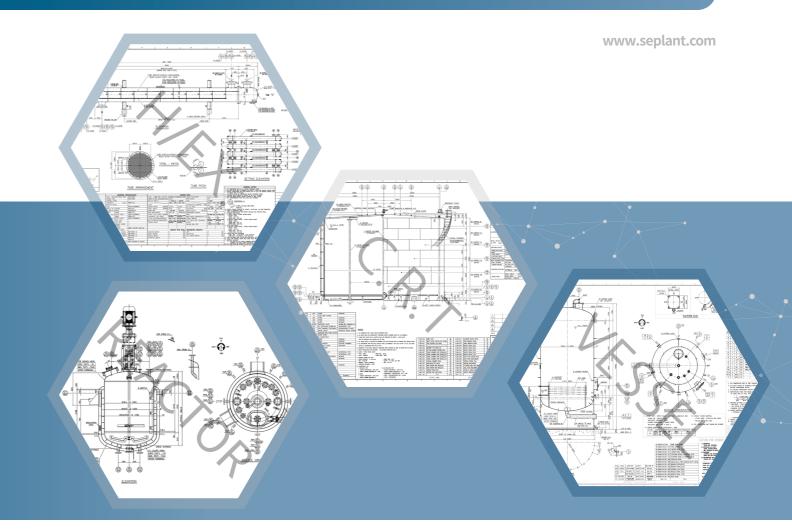
Total engineering company capable of design, certification and consulting. Petroleum·Precision Chemistry, Bio, Food, New Materials, Energy Environment, High-Performance Equipment (Pressure Vessel, Heat Exchanger, Tower, Storage Tank), PILOT PLANT, TEST BED, National Policy R&D Research Project, etc.





**MOBILE** +82-10-5796-2389 / +82-10-7760-6176 **OFFICE** +82-31-703-0480 **FAX** +82-31-703-0481

**E-MAIL** septech@septech.co.kr **WEB SITE** http://seplant.com


# **SEOEUN**

# PLANT TECH

# **About Company**

SEOEUN PLANT TECH CO., LTD. is an engineering company in petrochemical and precision chemistry, bio, food, new materials, and energy environment that addresses industry, academia, research, government, and military requirements in one step.

Also, Based on our know-how and trust accumulated over the past 30 years, SEOEUN PLANT TECH CO., LTD. is doing its best to ensure that customers who use our company are recognized not only in Korea but also in all overseas markets. Thank You.



# History

- 1998 Establishmented SEOEUN ENGINEERING (Business Field: Various Petrochemical Equipment, Engineering & Fabrication Design)
- 2002 Development of MECAL V2.0 strength calculation program (ASME CODE)
- 2005 MECAL V3.0 Strength Calculation Program NEW Version Release (ASME CODE)
- 2008 Apply COMPRESS Program(ASME CODE)
  - Business Expansion: Thermal Rating / Piping / Process / Structural Design
- **2011** Business Expansion: Inspection agency of Domestic pressure vessel design certification (KOSHA, KEA, KGS, Fire Defence Regulation)
- 2013 Business Expansion: Classification pressure vessel design certification inspection agency (KR, ABS, DNV, GL, LR)

- 2014 Taking a new leap forward with SEOEUN PLANT TECH Co., Ltd.
  - Business Expansion: KOSHA, Overseas certification inspection agency
- Apply for the MIDAS GEN Program. (Stress Analysis of Specific Shape Structures)
  - · Business Expansion: Initiate total engineering such as Process Design, Mechanical, electrical, and instrumentation
- 2017 · Business Expansion: KEA's import pressure vessel inspection agency begins
- **2018** Development and Application of JIS Strength Calculation Program.(JIS B8265~8267)
  - · Support for the manufacturing of high-level, high-performance special Item
- **2020** Business Expansion: Introducing and Designing Test Bed Concepts for the First Time in Korea
- **2022** Expansion of experimental facilities such as PILOT PLANT, TEST BED, etc.
- 2023 · Launching the development of the world's only design-related program



# **Company Introduction**

# **Design Scope DESIGN**

- 1) Drawings And Various Calculations
  - 1) Devices such as pressure vessels
- ② Strength calculation / Thermal Rating Finite Element Analysis(FEA) / Structural calculation
- 2) Total Engineering(Process, Mechanical, Electrical)
  - 1) PLANT Engineering(Petrochemical, Bio, Food, Energy)
  - 2 PILOT Engineering

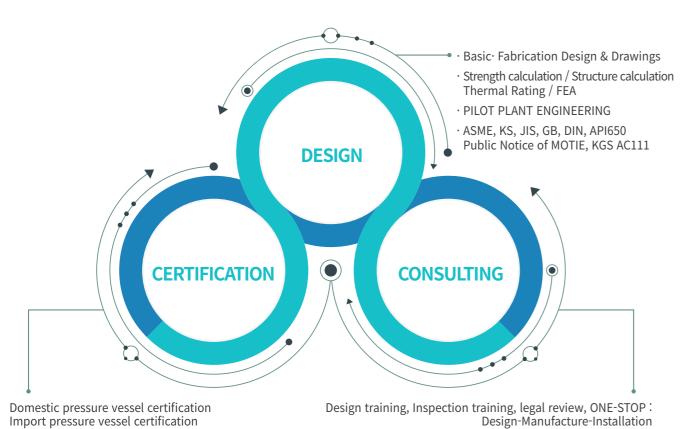
# **CERTIFICATION**

- 1) Domestic Equipment Certification
- 2) Certification of Imported Equipment
- 3) Classification Equipment Certification
- 4) Other Inspection Certification Agency

# CONSULTING

- 1) Design Training (ASME / KS / JIS / API)
- 2) Domestic Equipment / Import Equipment Inspection Course Training
- 3) Estimate Support / Review of the law
- 4) Manufacture Support

**TEST BED** SPECIAL MANUFACTURE PROJECT **EXPERIENCE** 




# **Design Scope**

# **Design Scope**

- ① All devices in pressurized vessels used in various fields such as Petroleum·Precision Chemical/Bio/ Pharmaceutical /Food/New Materials/Energy Environment
- 2 PILOT PLANT, TEST BED, R&D Research project
- ③ Type of scope of work requested by the client
- Participate in the Estimate Phase (Development, New, Expansion, Repair)
- If the client only wants the design (Drawing / Strength Calculation / Structure Calculation / Thermal Rating / PFD / P&ID / PIPING)
- If the client only wants certification (KOSHA / KEA / KGS)
- The Client wants to design & certification
- If the client wants design & certification & manufacture support
- If the Client wants Consulting (Design training / Inspection training / Review of the law)

\*It is recommended to proceed with the Pilot Plant/Test Bed/R&D according to 05.





# Design Target

PILOT engineering of pressure vessels or their entire process facilities used for storage, separation, transfer and mixing of fluids required for processes such as evaporation, absorption, distillation, drying, adsorption, etc



# **Design devices**

Pressure Vessel / Storage Tank / Heat Exchanger / Tower / Reactor / Agitator / Bio Tank / Air Header / Steam Header High-Pressure Gas Vessel / Autoclave / Retort / Sterilizer / Dyeing Machine / Receiver Tank / Steam Roller Extractor / Distiller / Dryer / High-Pressure Gas Vessel / Accumulator / Flash Tank / Evaporator



**Pressure Vessel** 





**Heat Exchanger** 

**Bio Tank** 







Reactor

**Storage Tank** 

Autoclave





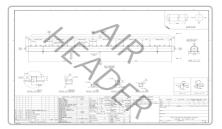


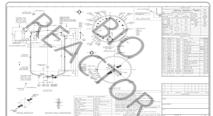
Silo

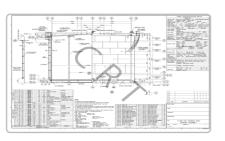
Tower

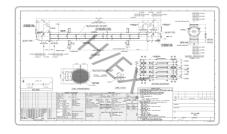
**PILOT PLANT** 

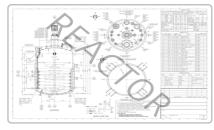
KOSHA / KEA / KGS / Fire defense regulation / Classification

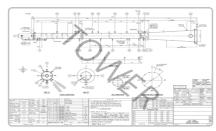

KOSHA, KEA, KGS, TUV, KR, DNVGL, ABS, LR, BV, RINA

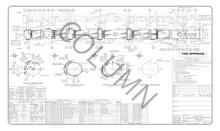


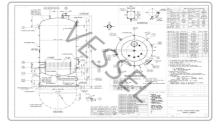


# **Design Drawing**

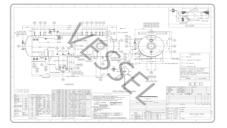

# Pressure Vessel-Basic/ Fabrication Design


Drawings can be made for all pressure vessels included in the design target, including VESSEL/REACTOR/H/EX./AUTOCLAVE/ TOWER/C.R.T./FILTER HOUSING/SILO/AIR HEADER.



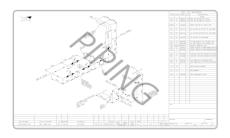



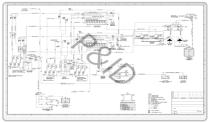



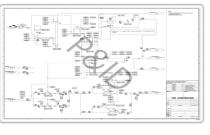



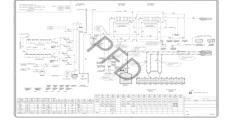


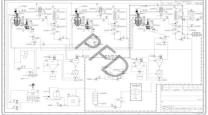


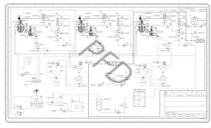





# PLANT - PFD / P&ID / PIPING


Designs of plant facilities smaller than a typical factory and larger than a laboratory size can be designed from process design to implementation design.
















# **Design Calculation**

# **Design Code**

ASME SEC. VIII DIV. 1,2 / KS B6750 / JIS B8265 / Public Notice of MOTIE / KGS AC111 / ASME SEC. X / API 620,650 / Classification Code (KR, ABS, DNV.GL, LR, RINA) etc.



COMPRESS/ MECAL / HTRI / MIDAS / ANSYS / Development and application of other self-made programs

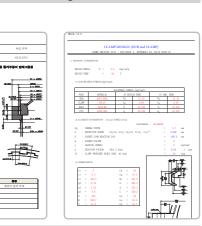




# **Strength Calculation**

ASME BPVC. SEC.VIII Division 1, 2 - American Mechanical Society Standard KS B 6750 - Korean Industrial Standards JIS B 8265~7 - Japanese Industrial Standards










**COMPRESS Program** 

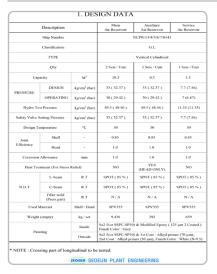
| 내압을 받는 동제의 두메 -:<br>05.8 6750 - 6.1.12                               |                                        | BEA. 12.0<br>ITEM 90. : 39E-2110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9586/50-6.1.12<br>: sex.                                             | NDB : 37504                            | 10% DISHED HEAD THICKNESS UNDER INTERNAL P<br>(原生容異者会示 第20号 圧力作器 核泡板板 第20条 JIS 8 285 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 95/40-060<br>95/40<br>960                                            | - 0.25 MMG<br>- 0.25 MMG               | ELR paramy: YERNIK paramy EN (secure): 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 명류한 등학자 전략 지금 (19시간)<br>당기 문화                                        | - 2900 mm<br>- 179,2 °C                | 1. 別分条件 (DESIGN CONDITION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 전략 의식적임<br>비밀력 의식적임<br>[K.Z.() 에 대한 이용 요즘 (영주방향)                     | - 0 mm                                 | 7: 最高後報定力 (ELEP) + 水根底 (SEEC MM) -<br>14: 最高後報定力 (ELEP) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 성용한 등학자 전략 지금 (IP 나라)<br>성용한 등학자 전략 전지금 (IP 나라)<br>설계은 보면서 지 학자와 중요학 | - 2300 mm<br>- 1150 mm<br>- 1128 Nimm* | Th: #-MEMI (SECON MAN) -  Th: (HE PROMINE STATE STATEMENTS)  TO: (HE PROMINE STATEMENTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 성은에서의 회의원들을적<br>[6.1,1 ki) 영역의 최소유역 = 1,5 = CA = CAo                 | - 130.0 N/mm²<br>- 1,50 mm             | CA: P(FIRE(F) (ASSAC CHEROSON ALMERIT)  CA: NITER-FT (ATSAC CHEROSON ALMERIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (日1726)<br>可信可想整可能的(617261)) (日472                                   | 10% or P.C. 0.385 Str. 0(%) (2/6)      | <ul> <li>は特権予治年 (NOT AVECASO)</li> <li>はおおの内や後 (CREED FOUR SPECIAL AUTO)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE/(SE-0.89)+CA+CAe<br>0.25 x 1150 / ( 112.8 x 1 -<br>2.55 mm        | 08 × 025 ) * 0 * 0                     | <ul> <li>2: キーカスーの利益 (Januseus Actus College Mandra)</li> <li>5: 投資機ではおりる計号が発送力 (Janus Mandra Man</li></ul> |
| . im중중값 - 2.55 mm                                                    | 1891: 5 mm                             | Tr: 施松文的美少年 (MLD FRENC ADMITS ACTIV) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1004,691184695 235 nm 07,486                                         | M2 5 mm 0108 55500                     | 2. Hass (Cristand Inventors)  1) 100 middes 5 (100 reside also Incodess)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PRINTE (63.32-0)<br>OT A COMPOSIO AN                                 |                                        | 1) 36 HARRY > (16 JUNE JUNE JUNE JUNE JUNE JUNE JUNE JUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50-0/81-0.60-Ph<br>1128 x 1 x 5 // 1190 = 0/<br>0.09 MPs0            | ** * > - *                             | 11 - FLE/(SE-0.27)+CA+Cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v a coup a g                                                         |                                        | - 0.052 x 2030 x 1.541 //2 x 126.110 x 1 - 0.2 x 0.002<br>- 2.02 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S(-0-(/0+0.6)<br>130.0 × 1 × 5 /( 1150 + 0/<br>0.56 MPsG             | ,                                      | <ol> <li>486+80 (micros sinces micros)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 73e)2)]                                                              |                                        | 17 - 7E GEORGE OF 13, 10 - 2.02 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 受報 (77.3 e) 2) 2.1) ]                                                |                                        | 2) 北州北京 ( 17.00 m ( 17.00  |
|                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

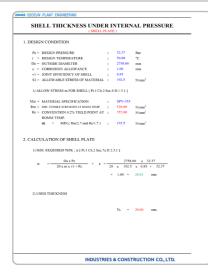


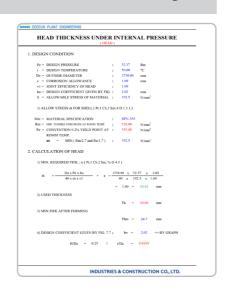
Metal Switchgear / Clamp Calculation

# **Public Notice of MOTIE- KEA Inspection Standards**

# Self-Made Program

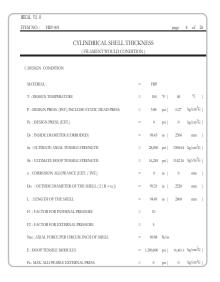

# 1. 설계조건 (Design Data)

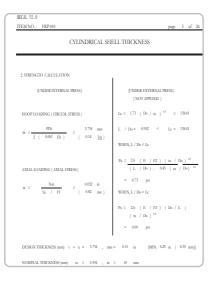

| ① 기기명                       |          | 1종 압력용기 / 1                          | 얼균기    | ② 8   | 8     |      |                          | 1.5                                                  | m <sup>2</sup> |
|-----------------------------|----------|--------------------------------------|--------|-------|-------|------|--------------------------|------------------------------------------------------|----------------|
| ③ 최고사용암                     | ≅(S/J)   | 0.35 / 0.35 N                        | PaG    | @ ≥   | 성사점수변 | 2    |                          | -                                                    |                |
| ③ 재료명(                      | S/J)     | STS316L / STS                        | 316L   | (§) A | 원료두제  | (S/J | 1)                       | 8 / 8                                                | mn             |
|                             | SPOT     | 4680                                 | nn     |       |       | T    | SPOT                     | 1560 >                                               | : 3            |
| ② 길이 이용                     | SPOT     | 5010                                 | nn     | Alt   | 산 근거  | Γ    | SPOT                     | 1670 x                                               | : 3            |
|                             | SPOT     | -                                    |        |       |       | T    | SPOT                     | -                                                    |                |
| <ul><li>(8) 둘레 이용</li></ul> | FULL     | -                                    | nn     | 2014  | 산 근거  | r    | FULL                     | -                                                    |                |
| ⑨ 총 길이                      | SPOT     | 9690 mm (6)                          | # St D |       | SPOT  | 8    | OH                       | @ 교차무역                                               | 0.78           |
|                             |          | - no                                 |        |       | FULL  | 0    | OH                       |                                                      |                |
|                             | LN LENGT | H(SPOT) : 300 mm<br>H(FULL) : 250 mm | ]      |       | 8 OH  | 0    | OH                       |                                                      |                |
| R.T FI                      | LN LENGT | H(SPOT) : 300 mm<br>H(FULL) : 250 mm |        |       | 8 19  | 0    | □RT<br>SPOT<br>- 468     | 매수 산정<br>매수 (S.L.W.L<br>0 x 0.2 / 300<br>3.12 -> 4 대 |                |
| R.T FI                      | LN LENGT | ((SPOT) : 300 ==                     |        |       | 8 01  | 0    | ORT   SPOT   - 468   = 3 | 매수 산정<br>매수 (S.L.W.L<br>D x 0.2 / 300                | -1-3)          |

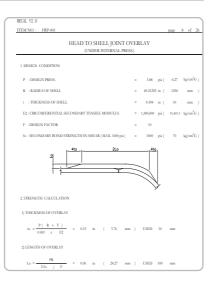

| 기기   | 평 또는 제품번호                           | 도면번호              | 적용규리                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------|-------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1중입  | 력용기 / 1중기타                          | D-5101A-001       | 신업통상자원부 고시 제 2015-183호                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      | t = PDi<br>2 σα η - 1.2 F           | + a = 2 x 11      | 0.3 x 2,850<br>4 x 0.95 - 1.2 x 0.3 + 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|      |                                     | = 3.95 mm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 되듯현  | 최소 투제 : 3                           | 1.95 mm           | (상부 / 하부)<br>사용투제: 12 / 15 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 동체   |                                     | • t=: 취소기         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 내 않) |                                     | P = : 설계인         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      |                                     |                   | ·동폐의 부식후의 안지름 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|      |                                     |                   | I 허용 인장용력 (N/mm²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|      | 대 = : 같이어용의 용접호율<br>대 = : 부식여유 (mm) |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      |                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | 제 정 STS3                            | 14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | 허용용력 👊 =                            | 114 N/mm 30.1.1 1 | the state of the s |  |
| _    | <u> </u>                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | PRW                                 | 0.0               | 3 x 2,850 x 1.54<br>4 x 1.0 - 0.2 x 0.3 + 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|      | 2 σα η - 0.2 Ε                      | 2 x 11            | 4 x 1.0 - 0.2 x 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|      |                                     | = 5.78 mm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      |                                     |                   | 사용투폐: 10.44 mm (성형후)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | 최소 투제 : 1                           | i.78 mm           | 사용투폐: 12.00 mm (성형전)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| HEAD |                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 십시청  | • 사용 두께 검토                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 경판   | # A E W                             |                   | ▶■ : 설계합력 (MPaG)<br>■ : 경판 중앙부의 부식후의 안쪽 반지름 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 내 양) | 의소 두제<br>1 - 두제의 간                  |                   | ■ : 재료의 허용 인장용력 (N/mm²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 상 부) |                                     |                   | ■ : 김이이용의 유접효율                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|      | 5.78                                |                   | = : 부식여유 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|      | = 5.78                              | 6.64 mm           | (1/4) x {3 + (R/r)0.5} = 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|      |                                     |                   | ■: 구석부의 부식후의 안쪽 반지름 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|      |                                     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      |                                     |                   | = 285 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|      | 제 정 STS3                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# Classification Strength Calculation- Type of Classification: ABS, LR, DNV.GL, NK, KR, RINA

# **Self-Made Program**



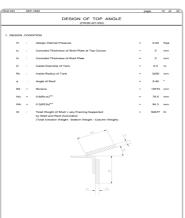




# Design Code of Plastic such as ASME BPVC SEC. X-FRP, PE

# **Self-Made Program**







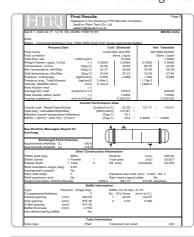

# **Structural Calculation**

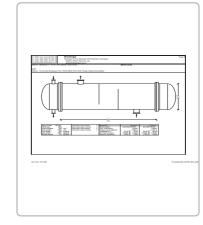
API 620 / API 650 - Design Criteria for Large Storage Tank

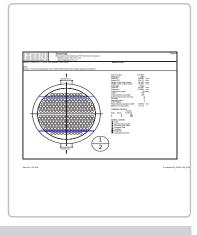
Earthquake-resistant / Wind Pressure Test - Notice of MPSS / Fire defense regulation



| NO. :    | PW-   | MF-463                                                                             | pe | ge    | 8 of             |
|----------|-------|------------------------------------------------------------------------------------|----|-------|------------------|
|          |       | DESIGN OF SHELL PLATE<br>(FROM API 650)                                            |    |       |                  |
| PART     | T NAM | E: SHELL                                                                           |    |       |                  |
| DESIGN   | CON   | DITION                                                                             |    |       |                  |
| D        |       | NOMINAL INSIDE DIAMETER OF TANK                                                    | -  | 2.35  | m                |
| Ht       |       | TOTAL HEIGHT OF TANK SHELL                                                         | -  | 2.593 | m                |
| Hd       |       | DESIGN LIQUID LEVEL                                                                | -  | 2.593 | m                |
| Hn       |       | HIGH LIQUID LEVEL                                                                  | -  | 2.5   | m                |
| DT       |       | DESIGN TEMPERATURE                                                                 | -  | 40    | °C               |
| н        |       | LIQUID LEVEL FOR THE DESIGN CONDITION                                              |    |       |                  |
| Pi       |       | DESIGN INTERNAL PRESSURE                                                           | -  | 204   | mmHz             |
| Pe       |       | DESIGN EXTERNAL PRESSURE                                                           |    | 61.2  | mmH <sub>2</sub> |
| Gi       |       | SPECIFIC GRAVITY OF LIQUID                                                         | -  | 1     |                  |
| G        |       | DESIGN SPECIFIC GRAVITY OF LIQUID                                                  |    | 1     |                  |
| CA       |       | CORROGION ALLOWANCE OF SHELL                                                       | -  | 0     | mm               |
| CAr      |       | CORROSION ALLOWANCE OF ROOF                                                        | -  | 0     | mm               |
| CAb      |       | CORROSION ALLOWANCE OF BOTTOM                                                      | -  | 0     | mm               |
| CAs      |       | CORROSION ALLOWANCE OF STRUCTURE                                                   | -  | 1.5   | mm               |
| tre      |       | REQUIRED SHELL THICKNESS (LARGER OF toe or tree)                                   |    |       |                  |
| tos      |       | CALCULATED SHELL THICKNE: (LARGER OF 66 or 8)                                      |    |       |                  |
| 1d       |       | SHELL THICKNESS FOR THE DESIGN CONDITION                                           |    |       |                  |
| **       |       | SHELL THICKNESS FOR THE HYDRO. TEST CONDITION                                      |    |       |                  |
| tms      |       | MINIMUM SHELL THICKNESS MINIMUM VIELD STRENGTH                                     | -  | 5     | mm               |
| Fy<br>Er |       | MINIMUM YIELD STRENGTH MINIMUM TENSILE STRENGTH                                    |    |       |                  |
| 54       |       | ALLOWABLE STRESS FOR THE DESIGN CONDITION                                          |    |       |                  |
| 50       |       | ALLOWABLE STRESS FOR THE DESIGN CONDITION  ALLOWABLE STRESS FOR THE TEST CONDITION |    |       |                  |
| w .      |       | DESIGN WIND VELOCITY = 162.0 Km/h                                                  |    | 45    | m/sec            |
| 2        |       | SEISMIC ZONE FACTY ( ZONE : 2A )                                                   |    | 0.15  |                  |
| Fr.      |       | YIELD STRENGTH REDUCTION FACTOR                                                    |    | 1.00  |                  |
|          |       | JOINT EFFICENCY                                                                    | Ċ  | 0.85  |                  |





Macal Program (Development of Seoeun Plant Tech)

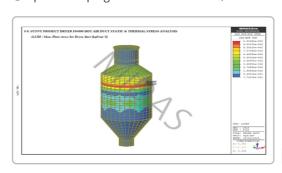

Earthquake resistant &

# **Thermal Rating**

HTRI-Simulation of the design according to the required performance of the heat exchanger








**HTRI Program** 

# Finite Element Analysis (FEA)

SEOEUN PLANT TECH CO., LTD.

- ① 1. Pre-processing 2. Analysis 3. Post-processing
- 2 Proceed with FEA analysis if it consists of a special type of structure that is difficult to prove by strength calculation
- ③ Create a report that meets the requirements of ASME BPVC SEC.VII DIV.2
- 4 Operational program-APPLY MIDAS GEN/ANSYS.





**MIDAS GEN Program** 

**ANSYS Program** 

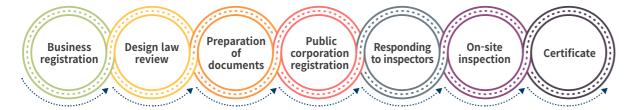


# **Domestic Equipment Certification**



- **Domestic Pressure Vessel Inspection Agency** 
  - · KOSHA
  - · KEA
  - $\cdot$  KGS
  - · KESCO (Handling only pressure vessels used in power generation facilities)








# **Criteria For Inspection By Major Institutions**

|                       | KOSHA                                                                                                                                                                       | KEA                                                                                                                                                                                                                        | KGS                                                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Inspection<br>subject | Chemical Process Fluid Handling Vessel - "A" pressure vessels  other vessels except "A" (Air / Nitrogen Tank) - "B" pressure vessels  Maximum Use Pressure 0.2 Mpa Exceeded | Pressure X Volume = Exceeding 0.004<br>and heated using heat, steam generation,<br>excess atmospheric pressure<br>-First class pressure vessel<br>Vessel that holds gas exceeding 0.2 MPa<br>-Second class pressure vessel | liquefied gas<br>-0.2Mpa or higher<br>Compressed gas<br>-1Mpa or higher                                        |
| Inspection code       | KS B 6750-3                                                                                                                                                                 | KS B 6750 or Public Notice of MOTIE                                                                                                                                                                                        | KGS AC111                                                                                                      |
| Inspection<br>order   | Written investigation ><br>Individual equipment investigation<br>(material, welding,<br>internal pressure)                                                                  | welding inspection ><br>structural inspection ><br>installation inspection                                                                                                                                                 | Design Review > Site<br>inspection of specific facilities<br>(Material, FIT-UP, Welding,<br>Internal Pressure) |

# **Inspection Equipment Certification Flow**



# **Certificates For Each Institution in Korea**



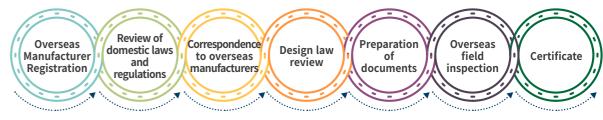













Overseas Inspection Certification Guide (Imported pressure vessel)

If the client wants to import overseas pressure vessels into Korea, We will do the entire process from determining the presence of the inspection equipments to receiving the certificate for the pressure vessels. (Application/Documents/Overseas site inspection /Interpretation /Education/Domestic installation) For more details, please follow our blog https://blog.naver.com/septech.

|                      | KOSHA                                                                                                                                                                                                                                                                            | KEA                                                                                                                                          | KGS                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inspection<br>method | <ol> <li>Exemption from inspection if certified by an international accredited institution that has signed an MOU with the public corporation.</li> <li>Same as domestic inspection.         Overseas manufacturing on-site inspection after written examination     </li> </ol> | Conduct overseas<br>manufacturing on-site<br>inspection after approval of<br>document review                                                 | ① Exemption from inspection if certified by an international accredited institution that has signed an MOU with the public corporation. ② Overseas manufacturing site inspection + Internal pressure inspection |
| Inspection code      | ASME<br>KS B 6750-3                                                                                                                                                                                                                                                              | KS B 6700 or Public Notice<br>of MOTIE                                                                                                       | KGS AC111                                                                                                                                                                                                       |
| Significant          |                                                                                                                                                                                                                                                                                  | When manufacturing large<br>amounts of the same equipment,<br>it is possible to alleviate<br>inspection by reviewing<br>factory registration | Manufacture is possible only<br>after obtaining a specific facility<br>manufacturing license                                                                                                                    |

# **Inspection Equipment Certification Flow**

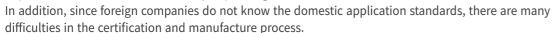


Support for installation inspection, regular inspection, and continuous use inspection after receiving in korea

# **KOREA ENERGY AGENCY(KEA) Imported Inspection** (Pressure Vessel)



(👉) 한국에너지공단




# **KEA Inspection Overview**

Due to the revision of the Energy Use Rationalization Act, manufacturing inspections will be conducted at manufacturers' sites on the same basis as in Korea for devices imported after December 3, 2017.

KEA imported vessel inspection is different from other countries.

In particular, domestic standards vary depending on the materials used.



Accordingly, SEOEUN PLANT TECH consults on KEA inspection to overcome these difficulties.

# **KEA Inspection Target and Type**

· High-temperature, high-pressure pressure vessels using thermal media in petrochemical, bio, pharmaceutical, food, energy, and new materials

[Energy Use Rationalization Act Article 31 Paragraph 6]

- · Inspection Device Type
- Pressure Vessel / Heat Exchanger / Reactor / Agitator / Bio Tank / Autoclave / Retort / Sterilizer Dyeing Machine / Extractor / Evaporator / Bio Similer / Bio Reactor / Fermentor / Glass Lined Vessel

# **KEA Inspection Criteria**

|                             | KS                                                               | мотів                                                     |
|-----------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| Technical Standard          | KS B 6750 (=ASME Sec.VIII div.1)                                 | MOTIE Notice No. 2019-16                                  |
| Available Material          | KS or ASME material only                                         | KS material or higher (JIS, EN, GB)                       |
| Quality Control<br>System   | Documented system needs                                          | Not required (But WPS required)                           |
| Specimen Test               | Require only in specific requirements                            | Requirements for fuselage length or perimeter joint welds |
| Self-Inspection<br>Accepted | Non-destructive, Mechanical testing cond or recognized companies | ucted by government-operated                              |

# **KEA Inspection Procedure**

1) Welding inspection (Steps 1 to 3)

(Only exemption from welding inspection)

Inspection received and Drawing review Self-Inspection Field Welding Inspection Document 2) Structural inspection (Steps 1 to 2) Field Structural **Publication** Inspection received and Certificates Drawing review Inspection

# **Agency for Inspection and Certification of Imported Equipments of KOSHA, KGS and KEA**



SEOEUN PLANT TECH CO., LTD. is a KEA, KOSHA, and KGS import pressure vessel certification agency. With 30 years of experience, we consult on all aspects of documentation, drawings, inspection and installation of imported devices.

**Customer of SEOEUN PLANT TECH CO., LTD.** 

Importers and Exporters: Project owner(User), Equipment supplier(Trading Company), Manufacturer

- Scope of Work of SEOEUN PLANT TECH CO., LTD.
  - for the contract
  - the manufacturing process
  - 3) KEA, KOSHA, and KGS pre-meeting
  - 1) Guidance on the information required 4) Drawing review and documentation based on KEA, KOSHA, and KGS requirements
  - 2) Manage delivery schedules tailored to 5) Dedicated to communication with KEA, KOSHA and KGS until documents are passed
    - 6) Accompanied by welding inspection and structural inspection
    - 7) Guide to passing installation inspection after transfer to Korea
- Need for collaboration with SEOEUN PLANT TECH CO., LTD.
  - 1) We provides consulting with expertise based on 30 years of experience.
  - 2) We directly manage all parts including documents, drawings, inspections, domestic delivery dates, and installation completion.
  - 3) We proceed according to the manufacturing and delivery schedule. Estimated time required : Document approval - About 3 weeks, Approval of inspection- About 6 weeks

# Performance of SEOEUN PLANT TECH CO., LTD.



Germany France Sweden Czech Italy China Thailand India Japan Netherlands Usa Spain Mexico Etc.

Since December 3, 2017, SEOEUN PLANT TECH Co., Ltd. has obtained or progress of inspection certification of about 1,000 pressure vessels in 36 countries.

- Other Tasks of SEOEUN PLANT TECH CO., LTD.
  - Domestic certification and Overseas import certification KOSHA, KEA, KGS, DNVGL, LR, ABS
  - Basic & Fabrication Drawings / Strength Calculation / Thermal Rating / FEA / Process Design P&ID / Earthquake-Resistant Design
  - Pilot Plant / Test Bed / Lab Bench Scale / Piping



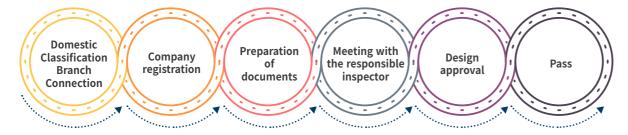




- · KR (Korean Register of Shipping)
- · ABS (American Bureau of Shipping)
- · DNV. GL (Det Norske Veritas&Germanischer Lloyd)
- · LR (Lloyds Register)
- · Nk (Nippon Kaiji Kyokai)
- · RINA (Registro Italiano Navale)














**Inspection Equipment Certification Flow** 02



**Sample Certificates By Major Classification Institutions** 













**KOSHA** 

**PSM** Where there are harmful or dangerous facilities prescribed by Presidential Decree

in the place of business [industrial safety and health act Article 44 Paragraph 1]

**Hazard Prevention Written Plan** 

Equipment manufacture process and direct machine, Machines used to prevent health problems, In case of starting construction work

[industrial safety and health act Article 42 Paragraph 1]

**Assessment Report** 

**Chemical Accident Impact** A person who intends to handle, install, and operate hazardous chemicals

[Chemical Substances Control Act Article 23]

**Safety Certification Change Report** 

If a manufacturer who has received safety certification intends to change machines, instruments, etc. [Notice on safety certification and voluntary safety

confirmation reporting procedures Article 21 Paragraph 1]

**Safety Inspection** (regular inspection) Conducting safety inspection of machines that fall under the safety inspection

target machine [Industrial safety and health act Article 93 Paragraph 1]

**Voluntary Safety Confirmation Report**  Machines corresponding to machinery subject to self-safety verification are

reported for verification [Industrial safety and health act Article 89 Paragraph 1]

02 KEA

> Installation Inspection

In case the inspection target device needs to be installed [Energy Use Rationalization Act Article 39 Paragraph 2]

Modification Inspection

A person who intends to remodel and use the inspection target device

[Energy Use Rationalization Act Article 39 Paragraph 2]

**Installation location Change Inspection** 

A person who intends to change the inspection target device to the installation location

[Energy Use Rationalization Act Article 39 Paragraph 2]

**Continued Use** Inspection

A person who intends to continue to use the inspection target device whose validity expires [Energy Use Rationalization Act Article 39 Paragraph 4]

KGS

**Specific Facility** 

High Pressure Gas Safety Management Act Article 5 Paragraph 1

**Manufacturing Permit Acquisition Support** 

**Overseas Company Factory Registration Support** 

**Other Inspections** 

**Explosion Proof** Certification

Items applicable to electricity such as IECEx/KC



# **Consulting**



- **Design Training** 
  - 1 ASME CODE-Design/Manufacturing Training

**Domestic/Import Inspection Process Training** 

- 4 API650 CODE-Design/Manufacturing Training
- ② KS CODE-Design/Manufacturing Training ③ JIS CODE-Design/Manufacturing Training
- 5 Training on how to operate design programs-COMPRESS / MECAL

# Training for the entire process from the beginning of inspection to certification and maintenance (Design + Manufacturing + Inspection Preparation)

- · For domestic and imported pressure vessels, on-site meetings are available.
- · Most of the subjects of inspection training fall under the following cases.
- · Subjects of inspection training
- ① In the case of domestic import-Overseas Manufacturer manager
- ② In the case of domestic inspection equipments- manufacturer manager
- ③ User/Agent/Trader

In the case of KEA import inspection, on-site inspection is mandatory, so it is necessary to respond to foreign manufacturers in accordance with domestic codes.



- **Legal Review And Estimate Support** 
  - **1** Review of Pressure Vessel Regulations
  - · Determining the inspection target of the pressure vessel / Equipments subject to exemption / Type 1, Type 2 Classification / Classification of Class A and Class B
  - · We will accurately review the laws and solve problems that may arise in the future.
  - 2 Priority of equipment to be inspected for pressure vessels
    - · The priority for each inspection institution is as follows. If the client's pressure vessel is subject to inspection by a higher level institution, it must be inspected by a higher level institution due to the grounds below. (KGS > KEA > KOSHA)
    - Basis: KOSHA-[Enforcement Rules of the industry Safety and Health Act Article 58 Paragraph 2] KEA-[Energy Use Rationalization Act Enforcement Rules Article 1 Paragraph 2]
  - **3** Preparation of various approval documents
    - · We support the preparation of various approval documents(JOB REQUI REMENT SPECIFICATIONS, WPS & PQR, INSPECTION & FABRICATION PROCEDURE, LOADING DATA) required by the customer.
  - **4** Estimate support work
    - · We provide all estimates for the work we provide, such as design / certification / consulting.
  - **5** Support for review of various approval documents
    - · Various documents such as drawings, strength calculations, and inspection documents submitted by VENDOR can be reviewed according to the customer's required specifications and design codes / legal standards.
- **Manufacture Support**



# **Test Bed**

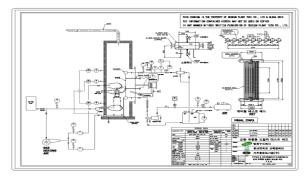


# The Only Test Bed Design Company In Korea - From Idea To Reality

#### **Test Bed**

It means designing and realizing the environment, space, system and facilities to test the performance, effectiveness, stability, mass manufacture possibility and convenience of new technologies and prototypes developed by research institutes and universities.

We have a lot of experience in the design of test beds and can present ideas to realize and implement your thoughts.


- · Possibility of localization of imported equipments and equipment development
- · LAB SCALE BENCH / R&D research project / Government project can be performed
- **Test Bed performance**

Circulating fluidzed bed combustion Test bed **Business Name** 

Development of Circulating fluidzed bed combustion Furance sound emission failure **Main Content** 

prediction diagnosis system

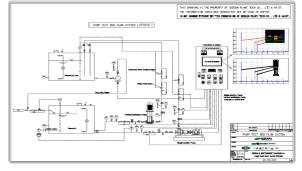
KETEP Customer





**Business Name** 

Nuclear power plant rotating equipment complex failure algorithm and database


development ENGINEERING

**Main Content** 

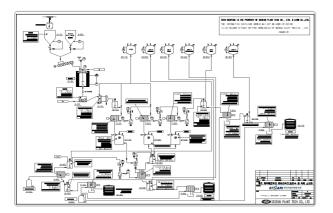
Development of Circulating fluidzed bed combustion Furance sound emission failure

prediction diagnosis system

Customer KOWEPO






# **Test Bed performance**

**Business Name** Basic engineering design for electrochemical drainage technology verification from automobile

waste catalysts

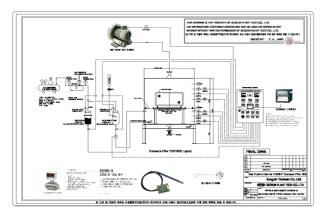
Verification of electrochemical platinum leaching technology from automobile waste catalysts **Main Content** 

Customer





**Business Name** 


Development of gas turbine inlet air moisture removal coalesce filter

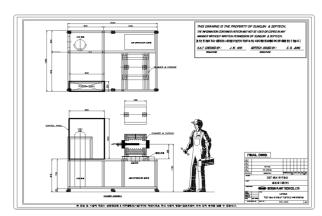
**Main Content** 

Due to the geographical characteristics of the power plant and frequent yellow dust,

moisture and dust accumulation deepens inside the air intake system

KOWEPO **Customer** 






**Business Name Main Content** 

Establishment of EGT sensor reliability test TEST BED

The gas is attached to the frame of the gas turbine to detect the temperature of the burned gas, and the combustion condition of the turbine is monitored in real time. Development of Temperature Sensor for Efficient and Safe Control of Gas Turbine

**Customer KOWEPO** 









# Manufactured special items with the world's best technology

# **Special Manufacture Project**

High-level devices (pressure vessel, heat exchanger, tower, etc.) are manufactured. Process design such as petrochemical, high purity GAS, precision chemistry, bio, and PANT, and design and manufacture of P&ID are carried out. Of course, We have the ability to perform BATCH SYSTEM, PILOT PLANT, COMERCIAL PLANT, etc.

# **Special Manufacture Project Performance**

**Business Name** 

SICL4 REFINEMENT STATION SYSTEM

**Main Content** 

SICL4 purification method that produces high purity SICL4 by purifying metal impurities, gaseous impurities, moisture, and oil contained in SiCL. High purity SICL4 purification PLANT of 99.999995% or more by simultaneously or continuously removing SICL4

impurity mixed gas using a distillation process

Customer

SOLEMATERIALS CO., LTD.





**Business Name** 

HEAVY TAR SALES EQUIPMENT

**Main Content** 

Installation of Commercial Plant for the purpose of selling heavy tar produced as a

by-product in Hyundai Steel's annual steelmaking process

Customer

HYUNDAI STEEL CO., LTD.











01

# Major partners of Industry, Academia, Research, Government



# Overseas

USA-(ALBEMARLE CORP, ROSS EQUIP, LOST WAX, KNBS, METHESON GAS, KBR, ENDORFF),
CHINA-(WUXI BIOLOGICS, ANHUI JINMA, DTS, JIBO TAIJI, TECH SOLUTION, INTERCONSTEK, SUNGIL HITEK),
JAPAN-(HITACHI, TOYO ENG'G, CHISSO ENG'G, BASF, KOBELCO, TOYOBO, YAMAGEN, KAJIWARA, HOSOKAWA),
FRANCE-(STERIFLOW, 3C FRANCE, PETRON BATTAN REFINERY), INDIA-(BIOZEEN),
GERMANY-(BOSH, DFT, JANSSEN, THEMATEK, INTRON), SAUDI ARABIA-(SIPCHEM, S.O.C), QATAR-(TASSNI),
OMAN-(OMAN OIL COMPANY E&P LLC, SALALAH METHANOL), BELGIUM-(Solvay)

# **Industrial**

SAMSUNG (Heavy Industries Co., Ltd./Engineering Co., Ltd./BIOLOGICS Co., Ltd./ELECTRONICS),
POSCO(HOLDINGS /FUTURE M/M-TECH), LG(Chem Ltd./Display/ENERGY SOLUTION), SK(Innovation Co., Ltd./Chemical co., Ltd.),
KAI, HANWHA(Tech/Solutions), HJ Shipbuilding & Construction Co., Ltd., DOOSAN, HANKOOK TIRE, DL E&C,
Foosung CO., LTD., HANSOL CHEMICAL, HUVIS, DUCKSAN, OCI, DOW CHEMICAL, KUMHO P&B CHEMICALS,
HANIL CEMENT Co., Ltd., NAMHAE CHEM., HANMI PHARM Co., Ltd., CHEMTROS, CELLTRION,
HANSOL CHEMICAL, SUNGSHIN CEMENT Co., Ltd., SAMPYO CEMENT Co., Ltd.

## **Education**

Industry-university cooperation with 20 universities nationwide including Chungnam National University, KAIST(Department of Aeronautics and Astronautics, Department of Mechanical Engineering), Seoul National University, University of Ulsan, Jeonbuk National University, etc.

#### Research

KARI, KIGAM, ADD(Engine test equipment), KIMM, NIER, KRIC, KETE, KAERI, KFE, KEPCO-ENC

#### Government

Ministry of National Defense, KORES, KORAIL, KT, Changwon City, Daegu Metropolitan City, Busan Metropolitan City, Seoul Metropolitan City, HOII, KOEN, KOWEPO, KEWP, KHNP

| NAME OF PROJECT                         | DESCRIPTION                                        | CLIENT                      | SITE     | YEAR |
|-----------------------------------------|----------------------------------------------------|-----------------------------|----------|------|
| BCC PROJECT                             | VESSEL                                             | SSANGYONG OIL REFINERY      | KOREA    | 1998 |
| INCINERATOR<br>SYSTEM                   | INCINERATOR                                        | HANYANG CHEMICAL            | KOREA    | 1998 |
| E/O PURIFICATION<br>PROJECT             | TOWER                                              | HYUNDAI PETROCHEMICAL       | KOREA    | 1998 |
| BTX PROJECT                             | VESSEL / H/EX.                                     | JEONGWOO CHEMICAL           | KOREA    | 1998 |
| NCC PROJECT                             | H/EX.                                              | NAMHAE CHEMICAL             | KOREA    | 1998 |
| JILIN CAK PROJECT                       | FLARE STACK                                        | TOYO ENGINEERING            | JAPAN    | 1998 |
| COMPANY PARK<br>BUILDING                | TOTAL ENGINEERING                                  | KYUNGHANG NESPAPER          | KOREA    | 1998 |
| TCL PROJECT                             | VESSEL/TOWER                                       | TOYO ENGINEERING            | JAPAN    | 1998 |
| HSR PROJECT                             | VESSEL/REACTOR                                     | HYUNDAI PETROCHEMICAL       | KOREA    | 1998 |
| FCC PROJECT                             | VESSEL(HIGH PRESSURE)                              | YUKONG                      | KOREA    | 1998 |
| CUPOLA FLUE<br>CLEANING SYSTEM          | FILTER / H/EX., / DUCT<br>STEEL STRUCTURE / PIPING | BUEKSAN                     | KOREA    | 1998 |
| RFCC F/G SOX<br>SCRUBBER                | STRUCTURE                                          | SK CORPORATION              | KOREA    | 1998 |
| BIBA-1 PROJECT                          | VESSEL                                             | BIBACO                      | KOREA    | 1998 |
| SOLVENT RECOVERY<br>SYSTEM              | VESSEL                                             | YOUL CHON CHEMICAL          | KOREA    | 1998 |
| OZONE TANK<br>SYSTEM<br>TANK & PIPING   | TANK, PIPING                                       | YOUL CHON CHEMICAL          | KOREA    | 1998 |
| SBR-9 PROJECT                           | CRT                                                | KUMHO PETROCHEMICAL         | KOREA    | 1999 |
| TSING MA BRIDGE<br>PROJECT              | TOTAL                                              | HONGKONG                    | HONGKONG | 1999 |
| UTILITY & FACILITY<br>PROJECT           | TOWER                                              | DAELIM INDUSTRIAL           | KOREA    | 1999 |
| PTA PROJECT                             | VESSEL                                             | SAMSUNG GENERAL<br>CHEMICAL | KOREA    | 1999 |
| LG 3AA PROJECT                          | C.R.T                                              | LG ENGINEERING              | KOREA    | 1999 |
| PL/TCM PLANT<br>PROJECT                 | TOTAL                                              | HANBO IRON STEEL            | KOREA    | 1999 |
| FEB PROJECT                             | TOTAL                                              | DONGYANG NYLON              | KOREA    | 1999 |
| YER-11 PROJECT                          | H/EX.                                              | KUMHO PETROCHEMICAL         | KOREA    | 1999 |
| OXYGEN SUPPLY<br>PLANT PROJECT          | TOTAL                                              | POSCO                       | KOREA    | 1999 |
| SR PROJECT                              | CRT                                                | LG ENGINEERING              | KOREA    | 1999 |
| HP24M PROJECT                           | VESSEL                                             | oa                          | KOREA    | 1999 |
| CRT PROJECT                             | H/EX.                                              | KOOKDO CHEMICAL             | KOREA    | 1999 |
| P PROJECT                               | TOWER / H/EX.                                      | DCI/KT                      | KOREA    | 1999 |
| 40,000 MTY K-RESIN<br>PROJECT           | FILTER, H/EX.                                      | DAELIM INDUSTRIAL           | KOREA    | 1999 |
| 396,000 T/Y#3<br>SULFURIC ACID<br>PLANT | BIG TOWER                                          | NAMHAE CHEMICAL             | KOREA    | 1999 |
| FLARE STACK<br>SYSTEM                   | TOTAL                                              | LG CHEMICAL                 | KOREA    | 2000 |

| NAME OF PROJECT                     | DESCRIPTION             | CLIENT                      | SITE   | YEAR |
|-------------------------------------|-------------------------|-----------------------------|--------|------|
| YDR-4 PROJECT                       | REACTOR / TOWER / H/EX. | KKPC                        | CHINA  | 2000 |
| VCM PROJECT                         | TOWER / H/EX.           | HYUNDAI<br>PETROCHEMICAL    | KOREA  | 2000 |
| PEB STRUCTURE                       | TOTAL                   | HANKOOK TIRE                | KOREA  | 2000 |
| KEROSENE/<br>DIESEL PROJECT         | STRUCTURE / H/EX.       | LG CALTEX OIL               | KOREA  | 2000 |
| NO.2 UTILITY<br>OFF-SITE<br>PROJECT | VESSEL / C.R.T          | SAMSUNG GENERAL<br>CHEMICAL | KOREA  | 2000 |
| CDP-1 PROJECT                       | TOTAL                   | SK NJC                      | KOREA  | 2000 |
| NO.2 PP<br>PROJECT                  | VESSEL / H/EX.          | PEMEX                       | KOREA  | 2000 |
| HEAVY NAPHTHA<br>SPLITTER UNIT      | TOTAL                   | SAMSUNG GENERAL<br>CHEMICAL | KOREA  | 2000 |
| P PROJECT                           | TOWER / H/EX.           | кт                          | KOREA  | 2000 |
| AGC AVL<br>PROJECT                  | VESSEL / H/EX.          | CHISSO ENGINEERING          | JAPAN  | 2000 |
| GWANGJU 2ND<br>FACTORY              | TOTAL                   | SAMSUNG ELECTRONICS         | KOREA  | 2000 |
| HYDROGEN<br>PLANT                   | VESSEL                  | FPC                         | KOREA  | 2000 |
| FLARE STACK<br>SYSTEM               | FLARE STACK             | PE CHEMICAL                 | TAIPEI | 2001 |
| CHEONGJU NO.5<br>PLAT               | VESSEL                  | DAESUNG SANSO               | KOREA  | 2001 |
| PET/OFF GAS<br>SCRUBBING<br>SYSTEM  | TOWER                   | SAMNAM                      | KOREA  | 2001 |
| AGC AVL<br>PROJECT                  | VESSEL / H/EX.          | CHISSO ENGINEERING          | KOREA  | 2001 |
| NEW TDI<br>PROJECT                  | VESSEL / H/EX.          | BASF                        | JAPAN  | 2001 |
| NEW HYVAHL<br>COMPLEX<br>PROJECT    | H/EX.                   | S-OIL                       | KOREA  | 2001 |
| VOC SYSTEM                          | VESSEL                  | BASF                        | KOREA  | 2001 |
| YM-2 PROJECT                        | H/EX.                   | LG                          | KOREA  | 2001 |
| KA1, K2, K4<br>PROJECT              | VESSEL / H/EX.          | CHEIL ENGINEERING           | KOREA  | 2001 |
| SGC AROMATICS<br>REVAMPING          |                         | SAMSUNG ENGINEERING         | KOREA  | 2001 |
| PROJECT                             | VESSEL H/EX.            | TEK KOREA                   | KOREA  | 2001 |
| EXPANSION<br>PROJECT 2002           | VESSEL / H/EX.          | LG NIKKO COPPER             |        | 2002 |
| NYLON POWDER<br>50 MTPY PLANT       | VESSEL / H/EX.          | SHINHO<br>PETROCHEMICAL     | KOREA  | 2002 |
| WORK TANK<br>FABRICATION            | VESSEL                  | DAEWOO ELEC.                | KOREA  | 2002 |
| VITAMIN B2<br>PRODUCTION<br>PROJECT | VESSEL / H/EX./ C.R.T   | BASF                        | KOREA  | 2002 |
| GWANGMYEONG                         | HEATER(TWO ZONE)        | LG POWER                    | KOREA  | 2002 |
| PROJECT                             | VESSEL                  | KOREA<br>PETROCHEMICAL.     | KOREA  | 2002 |
| PL/TCM PROJECT                      | H/EX.                   | DONGBU STEEL                | KOREA  | 2002 |
| BAIONGAN BLUE<br>SKY PROJECT        | VESSEL                  | HITACHI                     | KOREA  | 2002 |
|                                     |                         | :                           |        |      |

| NAME OF PROJECT                              | DESCRIPTION            | CLIENT                                     | SITE             | YEAR |
|----------------------------------------------|------------------------|--------------------------------------------|------------------|------|
| S-PROJECT                                    | VESSEL / H/EX.         | ксс                                        | KOREA            | 2002 |
| WATER JET<br>PROJECT                         | SPECIAL SYSTEM         | MINISTRY OF<br>NATIONAL DEFENSE<br>(국방부)   | KOREA            | 2002 |
| FPCC ARDS-I I<br>PROJECT                     | VESSEL                 | FORMOSA                                    | TAIWAN           | 2003 |
| SK 2nd LBO<br>PROJECT                        | TOTAL                  | SK CHEMICAL                                | KOREA            | 2003 |
| CHANSWON CITY<br>HOLL                        | TOTAL                  | GOVERNMENT                                 | KOREA            | 2003 |
| AIR FIN COOLER                               | COOLER                 | HYUNDAI OIL                                | KOREA            | 2003 |
| BP SHAH DENIZ<br>PROJECT                     | VESSEL                 | soc                                        | SAUDI<br>ARABIAN | 2003 |
| SK 2nd LBO<br>PROJECT                        | TOTAL                  | SK CHEMICAL                                | KOREA            | 2004 |
| CHANSWON CITY<br>HOLL                        | TOTAL                  | GOVERNMENT                                 | KOREA            | 2004 |
| HANWHA VENT<br>CONDENSER                     | H/EX.                  | HANHWA                                     | KOREA            | 2004 |
| DONGBU H/EX.                                 | H/EX.                  | DONGBU                                     | KOREA            | 2004 |
| KANGMYUNG<br>LOCAL HEATING                   | H/EX.(TWO ZONE)        | LG CONS.                                   | KOREA            | 2004 |
| AN WASTE WATER<br>T-N<br>TREATMENT<br>SYSTEM | TOTAL                  | TAEKWANG PETRO.                            | KOREA            | 2004 |
| FLARE STACK                                  | FLARE STACK            | JHON ZINK                                  | TAILAND          | 2004 |
| 5th GAS<br>SEPARATION<br>PLANT PROJECT       | VESSEL                 | HITACHI                                    | JAPAN            | 2004 |
| M-PROJECT                                    | REACTOR                | HANMAEK IND.                               | MYANMAR          | 2004 |
| FLARE STACK                                  | FLARE STACK            | HAMWORTHY                                  | INDONESIA        | 2004 |
| SUCTION HEATER<br>OF FUEL OIL                | STORAGE TANK           | KOREA WESTERN<br>POWER CO.,LTD<br>(한국서부발전) | KOREA            | 2004 |
| CURING OVEN<br>INCINERATOR                   | H/EX.                  | BUEKSAN                                    | KOREA            | 2004 |
| N-PROJECT                                    | REACTOR / VESSEL       | HYOSUNG CORP.                              | KOREA            | 2004 |
| LOTTE SAMGANG<br>CHON-AN<br>FACTORY          | VESSEL                 | DOOSAN MECHATEC                            | KOREA            | 2004 |
| VENT<br>CONDENSOR &<br>H/EX.                 | H/EX.                  | DONG YANG CHEMICAL                         | KOREA            | 2004 |
| SK COPORATION                                | STRUCTURE              | DOOSAN MECHATEC                            | KOREA            | 2005 |
| SOLVENT                                      | TOTAL                  | SAMKUN E&C                                 |                  | 2005 |
|                                              | PIPING / STRUCTURE     | YOUL CHON CHEMICAL                         | KOREA            | 2005 |
|                                              | H/EX.                  | LG                                         |                  | 2005 |
| KA1, K2, K4<br>PROJECT                       | TOTAL                  | CHEIL ENGINEERING                          | KOREA            | 2005 |
| EXPANSION<br>PROJECT 2002                    | VESSEL / H/EX.         | LG NIKKO COPPER                            | KOREA            | 2005 |
| WORK TANK<br>FABRICATION                     | TOWER / VESSEL         | DAEWOO ELEC.                               | KOREA            | 2005 |
| VITAMIN B2<br>PRODUCTION<br>PROJECT          | VESSEL / C.R.T / H/EX. | BASF                                       | KOREA            | 2005 |
| GWANGMYEONG<br>DISTRICT<br>HEATING           | H/EX.(TWO ZONE)        | LG POWER                                   | KOREA            | 2005 |

| NAME OF PROJECT                                                  | DESCRIPTION                             | CLIENT                                     | SITE      | YEAR |
|------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------|------|
| DONGBU H/EX.                                                     | H/EX.                                   | DONGBU                                     | KOREA     | 2005 |
| AN WASTE WATER<br>T-N<br>TREATMENT<br>SYSTEM                     | TOTAL                                   | TAEKWANG PETRO.                            | KOREA     | 2005 |
| FLARE STACK                                                      | FLARE STACK                             | JHON ZINK                                  | TAILAND   | 2005 |
| 5th GAS<br>SEPARATION<br>PLANT PROJECT                           | VESSEL                                  | HITACHI                                    | JAPAN     | 2005 |
| M-PROJECT                                                        | REACTOR                                 | HANMAEK IND.                               | MYANMAR   | 2005 |
| FLARE STACK                                                      | FLARE STACK                             | HAMWORTHY                                  | INDONESIA | 2005 |
| SUCTION HEATER<br>OF FUEL OIL                                    | STORAGE TANK                            | KOREA WESTERN<br>POWER CO.,LTD<br>(한국서부발전) | KOREA     | 2005 |
| N-PROJECT                                                        | REACTOR / VESSEL                        | HYOSUNG CORP.                              | KOREA     | 2005 |
| N-PROJECT                                                        | ENG'G DWG.                              | HYOSUNG                                    | KOREA     | 2006 |
| PLASMA PILOT<br>PLANT                                            | VESSEL                                  | KGC                                        | KOREA     | 2006 |
| PIT VESSEL                                                       | TOTAL                                   | SEC                                        | KOREA     | 2006 |
| POHANG H2<br>PROJECT                                             | VESSEL                                  | воск                                       | KOREA     | 2006 |
| PILOT PLANT                                                      | H/EX.                                   | JEIO                                       | KOREA     | 2006 |
| WTP 1nd LINE<br>TRANSFER<br>PROJECT                              | PIPING / STRUCTURE /<br>TOTAL EQUIPMENT | KAI                                        | KOREA     | 2006 |
| FORMSOA<br>NINGBO                                                | FILTER                                  | FORMOSA                                    | TAIWAN    | 2006 |
| JEBEL ALI POWER<br>AND<br>DESALINATION<br>STATION'L -<br>PHASE 2 | FILTER                                  | HEC                                        | KOREA     | 2006 |
| INITIAL Z                                                        | VESSEL / H/EX.                          | SAN NOPCO                                  | KOREA     | 2006 |
| BD PROJECT                                                       | VESSEL / C.R.T                          | DANSUK                                     | KOREA     | 2006 |
| DUNG QUAT<br>REFINERY<br>PROJECT                                 | STORAGE TANK                            | PETROVIETANA                               | VIETNAM   | 2006 |
| P2-PROJECT                                                       | VESSEL                                  | SAMSUNG TOTAL<br>PETROCHEMICALS            | KOREA     | 2006 |
| A-PROJECT                                                        | VESSEL / H/EX.                          | SK CHEMICAL                                | KOREA     | 2006 |
| MODACRYL RESIN<br>800L PILOT<br>PLANT                            | VESSEL                                  | HANWHA CHEMICAL                            | KOREA     | 2006 |
| SKICO REVAMP<br>PROJECT                                          | H/EX.                                   | SK INCHEON OIL                             | KOREA     | 2006 |
| CELLTRION<br>EXPANSION<br>PROJECT                                | VESSEL                                  | CELLTRION                                  | KOREA     | 2006 |
| WTP 2nd LINE<br>TRANSFER<br>PROJECT                              | PIPING / STRUCTURE /<br>TOTAL EQUIPMENT | KAI                                        | KOREA     | 2006 |
| HP-ECH PILOT                                                     | VESSEL / H/EX.                          | HANWHA CHEMICAL                            | KOREA     | 2006 |
| P2 PROJECT                                                       | ENG'G DWG.<br>TOTAL EQUIPMENT           | OCI                                        | KOREA     | 2007 |
|                                                                  | TOWER / VESSEL                          | HANWHA CHEMICAL                            | KOREA     | 2007 |
|                                                                  | REACTOR                                 | KOBELCO                                    | JAPAN     | 2007 |
| KPA PHENOL<br>PURIFICATION<br>REVAMP<br>PROJECT                  | REACTOR / VESSEL                        | KUMHO P&B CHEMICAL                         | KOREA     | 2007 |
| P PILOT PROJECT                                                  | SPECIAL REACTOR                         | ксс                                        | KOREA     | 2007 |

| IAME OF PROJECT                                       | DESCRIPTION                   | CLIENT                                         | SITE            | YEAR |
|-------------------------------------------------------|-------------------------------|------------------------------------------------|-----------------|------|
| DISTILLATION<br>UNIT SYSTEM                           | TOTAL EQUIPMENT               | KAYA ENERGY                                    | KOREA           | 2007 |
| B-1 PROJECT                                           | TOWER / VESSEL / H/EX.        | BIZEL CORPORATION                              | KOREA           | 2007 |
| ACP PLANT<br>PROJECT                                  | VESSEL / C.R.T                | ECOPRO                                         | KOREA           | 2007 |
| BPA(III) PLANT<br>PROJECT                             | VESSEL                        | KUMHO P&B CHEMICAL                             | KOREA           | 2007 |
| MIBK PLANT<br>REVAMP<br>PROJECT                       | TOWER                         | KUMHO P&B CHEMICAL                             | KOREA           | 2007 |
| FUMED SILICA<br>PROJECT                               | TOWER                         | ксс                                            | KOREA           | 2007 |
| KFCT PROJECT                                          | C.R.T                         | осі                                            | KOREA           | 2007 |
| GLOW 115MW<br>CFB3 PROJECT                            | SPECIAL VESSEL                | GLOW ENERGY PUBLIC                             | KOREA           | 2007 |
| ARQ PROJECT                                           | ENG'G DWG.<br>TOTAL EQUIPMENT | TASSNI                                         | QATAR           | 2008 |
| HMC PP PROJECT<br>LINE-3                              | VESSEL                        | HMC POLYMERS                                   | KOREA           | 2008 |
| 40m3 REACTOR                                          | SPECIAL REACTOR               | KOBELCO                                        | JAPAN           | 2008 |
| RUSSIA PROJECT                                        | REACTOR                       | SAMHWA MIXING TECH                             | RUSSIA          | 2008 |
| THAILAND ASR<br>PROJECT                               | REACTOR / VESSEL / H / EX.    | HANWHA CHEMICAL<br>THAILAND                    | THAILAND        | 2008 |
| P2 PROJECT                                            | TOWER / VESSEL / H/EX.        | осі                                            | KOREA           | 2008 |
| SALALAH<br>METHANOL<br>PROJECT                        | H/EX.                         | SALALAH METHANOL                               | OMAN            | 2008 |
| P3 PROJECT                                            | ENG'G DWG.                    | осі                                            | KOREA           | 2008 |
| CNP PROJECT                                           | TOWER / VESSEL / C.R.T        | HANWHA TECH                                    | CHINA           | 2008 |
| CNP PROJECT                                           | VESSEL                        | HANWHA CHEMICAL                                | CHINA           | 2009 |
| P3.5 PROJECT                                          | VESSEL                        | осі                                            | KOREA           | 2009 |
| OSAN STEAM<br>SUPPLY AND<br>POWER<br>GENERATION       | H/EX. (TWO ZONE)              | KOSEP                                          | KOREA           | 2009 |
| DINH VU<br>POLYESTER<br>PLANT<br>PROJECT              | VESSEL                        | PV-TEX                                         | VIETNAM         | 2009 |
| HP-2 PROJECT                                          | TOWER / REACTOR               | HANSOL CHEMICAL                                | KOREA           | 2009 |
| NO.4 DNT<br>PROJECT                                   | VESSEL / H/EX.                | HUCHEMS                                        | KOREA           | 2009 |
| ADD ENGINE<br>TEST FACILITY<br>PROJECT                | TOTAL                         | AGENCY FOR DEFENSE<br>DEVELOPMENT<br>(국방과학연구소) | KOREA           | 2009 |
| FAJAR PAPER<br>WASTE<br>INCINERATION<br>PLANT PROJECT | INCINERATOR                   | HYOSUNG EBARA<br>ENGINEERING                   | INDONESIA       | 2009 |
| YEO SU THERMAL<br>POWER PLANT<br>UNIT 2               |                               | KOSEP                                          | KOREA           | 2009 |
| MAIN, AUXILIARY<br>FUEL HEATER                        | TOTAL                         | AGENCY FOR DEFENSE<br>DEVELOPMENT<br>(국방과학연구소) | KOREA           | 2010 |
| GYPSUM WATER<br>2ND<br>SLUDGE<br>PROCESS              | TOTAL                         | NAMHAE CHEMICAL                                | KOREA           | 2010 |
| OCMI C PROJECT                                        | ENG'G DWG.                    | осі                                            | KOREA           | 2010 |
| P3.7 PROJECT                                          | TOTAL EQUIPMENT               | осі                                            |                 | 2010 |
| EA PROJECT                                            | TOTAL EQUIPMENT               | SIPCHEM                                        | SAUDI<br>ARABIA | 2010 |

| NAME OF PROJECT                                           | DESCRIPTION                              | CLIENT                                | SITE      | YEAR |
|-----------------------------------------------------------|------------------------------------------|---------------------------------------|-----------|------|
| NEOTECHS<br>ROTARY<br>PRESSURE<br>FILTER PILOT<br>PROJECT | TOTAL                                    | SK PETROCHEMICAL                      | KOREA     | 2010 |
| CAPE PROJECT                                              | C.R.T                                    | KPX LIFE SCIENCE                      | KOREA     | 2010 |
| CA2 PROJECT                                               | VESSEL                                   | осі                                   | KOREA     | 2010 |
| AUTO CRAVE<br>PROJECT                                     | VESSEL                                   | ROULUNDS RUBBER                       | DENMARK   | 2010 |
| 2x60MW MERAK<br>CFPP PROJECT                              | SILO                                     | PT. MERAK ENERGI<br>INDONESIA         | INDONESIA | 2010 |
| NO.4 DNT<br>PROJECT                                       | ENG'G DWG.                               | HUCHEMS                               | KOREA     | 2010 |
| P4-PROJECT<br>(18000 TON)                                 | TOTAL                                    | осі                                   | KOREA     | 2011 |
| EAGLE PROJECT                                             | REACTOR / VESSEL / H /<br>EX.            | HANWHA CHEMICAL                       | KOREA     | 2011 |
| C.R.T (2000 M3)                                           | C.R.T                                    | SKC                                   | KOREA     | 2011 |
| SPC ULSAN NO.1<br>PTA DBN<br>PROJECT                      | TOTAL                                    | SAMSUNG TOTAL                         | KOREA     | 2011 |
| NORTH STAR<br>PROJECT<br>(1200 M3)                        | D.R.T                                    | THE DOW CHEMICAL COMPANY              | KOREA     | 2011 |
| A/R PILOT<br>PROJECT                                      | TOTAL                                    | JEONBUK UNIVERSITY                    | KOREA     | 2011 |
| NO.1 TAC<br>PROJECT                                       | H/EX.                                    | SK INNOVATION                         | KOREA     | 2011 |
| 1000 MT/y K-991<br>3RD PLANT                              | TOWER / VESSEL / H/EX.                   | FOOSUNG CO., LTD.                     | KOREA     | 2011 |
| GARNET<br>BLASTING<br>MACHINE                             | VESSEL                                   | SAMSUNG HEAVY<br>INDUSTRY             | KOREA     | 2011 |
| KPA(III) REVAMP<br>PROJECT                                | TOWER                                    | KUMHO P&B CHEMICAL                    | KOREA     | 2011 |
| EDISON PROJECT                                            | REACTOR                                  | SAMSUNG BIOLOGICS                     | KOREA     | 2011 |
| SMVR-01<br>PROJECT                                        | TOTAL                                    | SK PETROCHEMICAL                      | KOREA     | 2011 |
| #2 BTX-PROJECT                                            | VESSEL                                   | HC PETROCHEM                          | KOREA     | 2011 |
| NaOH<br>CONCENTRATION<br>PLANT                            |                                          | PKC CHEMICAL &<br>BIOTECH             | KOREA     | 2011 |
| EA PROJECT                                                | ENG'G DWG.                               | SIPCHEM                               |           | 2011 |
| CIVP PROJECT                                              | REACTOR                                  | HITACH PLANT<br>TECHNOLOGIES          | JAPAN     | 2011 |
|                                                           | REACTOR                                  | HONAM MITSUI<br>CHEMICALS INC         | KOREA     |      |
| EVALUATION<br>REACTOR                                     | PILOT PLANT SYSTEM                       | HANWHA                                | KOREA     | 2011 |
| SOUTH PARS GAS<br>FIELD<br>DEVELOPMENT                    | PIPING                                   | NIOC PARS OIL AND GAS<br>CO.,LTD.     | IKAN      | 2011 |
| #2 BTX PROJECT                                            | STRAINER                                 | HC PETROCHEM                          |           | 2012 |
| YDR-S-1 SSBR<br>PROJECT                                   | H/EX.                                    | DAELIM INDUSTRIAL<br>CO.,LTD.         | KOREA     | 2012 |
| NO.2 SPENT<br>CAUSTIC<br>INCINERATOR<br>SYSTEM            | INCINERATOR / VESSEL /<br>H/EX.<br>STACK | GS CALTEX<br>CORPORATION              | KOREA     | 2012 |
| 30,000 MTPA AC/<br>ECH PLANT                              | TOWER / VESSEL                           | SAMSUNG FINE<br>CHEMICALS<br>CO.,LTD. |           | 2012 |
| REACTOR<br>PROJECT                                        | REACTOR                                  | тоуово со., ltd.                      | JAPAN     | 2012 |
| MUSANDAM GAS<br>PLANT                                     | VESSEL / FILTER                          | OMAN OIL COMPANY<br>E&P LLC           | OMAN      | 2012 |

| NAME OF PROJECT                                            | DESCRIPTION                 | CLIENT                                        | SITE           | YEAR |
|------------------------------------------------------------|-----------------------------|-----------------------------------------------|----------------|------|
| DONGHAE BIOMASS<br>POWER<br>PLANT                          | SILO                        | KOREA EAST-WEST<br>POWER<br>CO.,LTD. (한국동서발전) | KOREA          | 2012 |
| REFINERY MASTER<br>PLAN 2<br>PROJECT                       | VESSEL                      | PETRON BATAAN<br>REFINERY                     | FRANCE         | 2012 |
| P3.9 PROJECT                                               | VESSEL                      | осі                                           | KOREA          | 2012 |
| PURE GROWTH<br>PROJECT                                     | ENG'G DWG.                  | ALBEMARLE<br>CORPORATION                      | U.S.A          | 2012 |
| CF DRYER PROJECT                                           | VESSEL                      | YOUGUANG CHEMICAL<br>CO.,LTD.                 | KOREA          | 2012 |
| HIB 1000L PROJECT                                          | VESSEL                      | LG LIFE SCIENCES<br>CO.,LTD.                  | KOREA          | 2012 |
| TOTE TANK PROJECT                                          | VESSEL                      | BOKWANG CO.,LTD.                              | KOREA          | 2012 |
| EDISON II PROJECT                                          | REACTOR / VESSEL            | SAMSUNG BIOLOGICS                             | KOREA          | 2013 |
| LP-1 PPB EXTENSION<br>PROJECT                              | REACTOR / VESSEL            | HANWHA CHEMICAL                               | KOREA          | 2013 |
| TRIM HEATER<br>PROJECT                                     | H/EX.                       | DAELIM INDUSTRIAL<br>CO.,LTD.                 | KOREA          | 2013 |
| P0093s&P0095<br>PROJECT<br>(ABS & G.L)                     | AIR RESERVOIR               | HANJIN HEAVY<br>IND.&CON.                     | PHIL-<br>SUBIC | 2013 |
| OLE-SIV BENCH<br>SCALE PROJECT                             | REACTOR / VESSEL            | SK INNOVATION                                 | KOREA          | 2013 |
| RESIN REACTOR<br>SYSTEM<br>PROJECT                         | REACTOR / VESSEL /<br>H/EX. | FTC KOREA CO.,LTD.                            | KOREA          | 2013 |
| HYDROMETALLURGY<br>PILOT PLANT<br>BASIC DESIGN             | ENG'G DWG.                  | KORES                                         | KOREA          | 2013 |
| 400 BAR TEST BENCH<br>PROJECT                              | VESSEL (HIGH<br>PRESSURE)   | SVC                                           | KOREA          | 2013 |
| SEWAGE TREATMENT<br>EQUIPMENT                              | VESSEL / H/EX.              | BUSAN PORT<br>AUTHORITY<br>(부산항만공사)           | KOREA          | 2013 |
| AUTO CLAVE<br>PROJECT                                      | AUTO CLAVE                  | Hosiden Vietnam<br>(Bac Giang)<br>Co.,Ltd.    | VIETNAM        | 2013 |
| NCP0104~0119<br>PROJECT (DNV)                              | AIR RESERVOIR               | HANJIN HEAVY<br>IND.&CON.                     | PHIL-<br>SUBIC | 2013 |
| CFRTPC PROJECT                                             | REACTOR / VESSEL            | HANWAH L&C                                    | KOREA          | 2013 |
| DEG DRYING FACILITY<br>PROJECT                             | TOTAL                       | YOUKWANG CHEMICAL<br>CO.,LTD.                 | KOREA          | 2013 |
| WARA PRESSURE<br>MAINTENANCE<br>PROJECT                    | STRUCTURE                   | KUWAIT OIL COMPANY<br>(K.S.C.)                | KUWAIT         | 2013 |
| GMP PROJECT                                                |                             | NATURALENDO TECH<br>CO.,LTD.                  | KOREA          | 2013 |
| S721s PROJECT (DNV)                                        |                             | HYUNDAI SAMHO                                 | KOREA          | 2013 |
| SLUDGE RECOVER<br>PROJECT                                  |                             | NAMHAE CHEMICAL<br>CO.,LTD.                   | KOREA          | 2013 |
| PROJECT                                                    | REACTOR / VESSEL            | KISCO                                         | KOREA          | 2013 |
| NCP0123s PROJECT<br>(G.L & RINA)                           | AIR RESERVOIR               | HANJIN HEAVY<br>IND.&CON.                     | PHIL-<br>SUBIC | 2013 |
| DUST COLLECTOR<br>PROJECT                                  | VESSEL                      | KORAIL                                        | KOREA          | 2014 |
| RESIN PROJECT                                              | VESSEL                      | SAMSUNG TOTAL                                 | KOREA          | 2014 |
| SLP CCGT Power<br>Plant PROJECT                            | VESSEL / FRP<br>VESSEL      | SAMSUNG ENGINEERING                           | KOREA          | 2014 |
| NCP0113, 114, 128,<br>130, 134s<br>PROJECT<br>(ABS,GL,DNV) |                             | HANJIN HEAVY<br>IND.&CON.                     | PHIL-<br>SUBIC | 2014 |
| WATER HEATING<br>SYSTEM<br>PROJECT                         | REACTOR / H/EX.             | HANSEO CHEMICAL CO.,<br>LTD.                  | KOREA          | 2014 |

| NAME OF PROJECT                             | DESCRIPTION               | CLIENT                                    | SITE       | YEAR |
|---------------------------------------------|---------------------------|-------------------------------------------|------------|------|
| YANBU POWER AND<br>DESALINATION PLANT       | SILO / STRUCTURE          | SALINE WATER<br>CONVERSION<br>CORPORATION | SAUDI      | 2014 |
| NTP0137s PROJECT<br>(DNV)                   | AIR RESERVOIR             | HANJIN HEAVY<br>IND.&CON.                 | PHIL-SUBIC | 2014 |
| Premixing PROJECTT                          | VESSEL                    | OCI Special CO.,LTD.                      | KOREA      | 2014 |
| PURIFICATION<br>COLUMN PROJECT              | TOWER / REACTOR           | SOULBRAIN Co.,Ltd.                        | KOREA      | 2014 |
| BCCM PLANT PROJECT                          | VESSEL                    | SEAH BESTEEL                              | KOREA      | 2014 |
| FIXED BED REACTOR<br>SYSTEM                 | VESSEL (HIGH<br>PRESSURE) | DAELIM IND.<br>CO.,LTD.                   | KOREA      | 2014 |
| MPPU PROJECT                                | STACK / HEATER            | STYROLUTION<br>(Thailand) Co.,Ltd         | THAILAND   | 2014 |
| A1 PROJECT                                  | FILTER                    | KPX Green Chemical<br>Co.,Ltd.            | KOREA      | 2014 |
| WASTEWATER<br>TREATMENT<br>DRYING FACILITY  | DRYER                     | CHEON-IL<br>CHEMICAL                      | KOREA      | 2015 |
| SUPERCONDUCTING<br>FAULT<br>CURRENT LIMITER | VESSEL                    | KIMM<br>(한국기계연구원)                         | KOREA      | 2015 |
| BIOGAS ENERGY<br>PROJECT                    | VESSEL                    | UIJEONGBU CITY<br>(의정부시)                  | KOREA      | 2015 |
| STEAM GENERATOR<br>PROJECT                  | HEATER                    | KEPCO<br>ENG'G&CONST.                     | KOREA      | 2015 |
| J-N20 PLANT<br>EXPANSION PROJECT            | TOTAL EQUIPMENT           | WONIK MATERIALS                           | KOREA      | 2015 |
| SRF LN2 SEPARATOR<br>PROJECT                | VESSEL (HIGH<br>PRESSURE) | NIER<br>(국립환경과학원)                         | KOREA      | 2015 |
| LP&HP HEATER                                | HEATER (LP&HP)            | BESAT POWER<br>PLANT                      | KOREA      | 2015 |
| SUNNY PROJECT                               | DRYER                     | SOLVAY                                    | KOREA      | 2015 |
| RO-COMP.<br>CALORIMETER<br>PROJECT          | VESSEL                    | SAMSUNG                                   | KOREA      | 2015 |
| BAS-514H PROJECT                            | H/EX.                     | OCI                                       | KOREA      | 2015 |
| A PROJECT                                   | REACTOR / VESSEL          | ROSS EQUIP.                               | USA        | 2015 |
| REACTOR PROJECT                             | REACTOR                   | HANSEO CHEM.                              | KOREA      | 2015 |
| FFC MIXING SYSTEM<br>PROJECT                | VESSEL                    | DOOSAN                                    | KOREA      | 2015 |
| DANYANG PLANT<br>PROJECT                    | VESSEL                    | HANIL CEMENT<br>CO.,LTD.                  | KOREA      | 2016 |
| UK3 PROJECT                                 | BIO REACTOR               | HITACHI                                   | JAPAN      | 2016 |
| EDISON III PROJECT                          | BIO REACTOR               | SAMSUNG<br>BIOLOGICS                      | KOREA      | 2016 |
| CP-2 LM-V PROJECT                           | C.R.T                     | HUVIS                                     | KOREA      | 2016 |
| TOTAL PIPING SYSTEM                         | PIPING                    | KGS                                       | KOREA      | 2016 |
| REACTOR PROJECT                             | REACTOR                   | HANSEO CHEM.                              | KOREA      | 2016 |
| LN2 SEPARATOR<br>PROJECT                    | VESSEL (HIGH<br>PRESSURE) | NIER                                      | KOREA      | 2016 |
| FILTER HOUSING<br>PROJECT                   | FILTER                    | ELCOM KOREA<br>LIMITED                    | KOREA      | 2016 |
| EDISON III PROJECT                          | BIO REACTOR               | SAMSUNG<br>BIOLOGICS                      | KOREA      | 2016 |
| S PROJECT                                   | VESSEL / C.R.T / H/EX.    | WONIK MATERIALS                           | KOREA      | 2016 |

| NAME OF PROJECT                                                                        | DESCRIPTION                 | CLIENT                   | SITE  | YEAR |
|----------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------|------|
| E PROJECT                                                                              | REACTOR / TOWER /<br>VESSEL | DAELIM                   | KOREA | 2016 |
| 100,000 MTY PB2<br>PLANT                                                               | REACTOR                     | DAELIM                   | KOREA | 2016 |
| HANMI BIOPLANT<br>PROJECT                                                              | BIO REACTOR                 | HANMI PHARM<br>CO.,LTD.  | KOREA | 2016 |
| UK3 PROJECT                                                                            | BIO REACTOR                 | HITACHI                  | JAPAN | 2016 |
| 50L PURIFICATION<br>SYSTEM                                                             | TOTAL                       | HANSOL CHEMICAL          | KOREA | 2016 |
| C-PURIFICATION<br>SYSTEM                                                               | VESSEL / HEX.               | DUKSAN UMT               | KOREA | 2016 |
| HCDS SYNTHESIZER<br>SYSTEM                                                             | VESSEL                      | DUKSAN UMT               | KOREA | 2016 |
| HIGH EFFICENCY<br>CYCLONE<br>SEPARATOR                                                 | VESSEL                      | HANWHA                   | KOREA | 2016 |
| YEOJU PLANT                                                                            | AIR HEADER                  | HANIL CEMENT<br>CO.,LTD. | KOREA | 2016 |
| DREAM PROJECT                                                                          | BIO REACTOR                 | POLUS                    | KOREA | 2017 |
| RO-COMP.CALORI<br>JECTION                                                              | VESSEL                      | SAMSUNG                  | KOREA | 2017 |
| SHIN-KORI<br>NUCLEAR POWER<br>PLANT                                                    | VESSEL / TANK               | KHNP(한국수력원자력)            | KOREA | 2017 |
| J-N20 1800MTPY<br>EXPANSION                                                            | H/EX.                       | WONIK MATERIALS          | KOREA | 2017 |
| CIRCULATING<br>FLUIDIZED BED<br>BOILER 3년 시운전<br>원자력 3년 시운전<br>FOR POWER<br>GENERATION | TEST BED                    | ULSAN UNVERSITY          | KOREA | 2017 |
| FLUID REACTOR                                                                          | TEST BED                    | KAIST                    | KOREA | 2017 |
| RESIDUE<br>UPGRADING<br>COMPLEX                                                        | VESSEL / TANK               | S-OIL                    | KOREA | 2017 |
| BIO PLANT NO.2<br>FACTORY                                                              | BIO REACTOR                 | HANMI PHARM              | KOREA | 2017 |
| STERILIZED<br>INCUBATOR                                                                | BIO REACTOR                 | 충북내수면연구소                 | KOREA | 2017 |
| NTS PROJECT                                                                            | VESSEL                      | KUKDO CHEMICAL           | KOREA | 2017 |
| PRESSURIZATION<br>CHAMBER                                                              | TEST BED                    | SAMSUNG                  | KOREA | 2017 |
| BIO KOMBINAT                                                                           | REACTOR / H/EX.             | GS CALTEX                | KOREA | 2017 |
| PHEONIX                                                                                | BIO REACTOR                 | CELLTRION                |       | 2017 |
| 탈진 폐촉매로부터<br>희유금속(V,W)회수 및<br>촉매 소재화                                                   | PILOT PLANT                 | KIGAM<br>(한국지질자원연구소)     | KOREA |      |
| KODENO KT 7                                                                            | REACTOR / H/EX.             | KRICT(한국화학연구원)           |       | 2018 |
| HASTELLOY<br>REACTOR /H/EX.                                                            | REACTOR / H/EX.             | CHEMTROS                 | KOREA |      |
| IMPORT<br>OOMMODITY(BIO)                                                               | REACTOR                     | BIOZEEN                  | INDIA | 2018 |
| HCDS EP FACILITIES<br>PROJECT                                                          | VESSEL / SYSTEM             | DS TECHOPIA              | KOREA | 2018 |
| REACTOR /<br>CONDENSER                                                                 | REACTOR / H/EX.             | DK PHARM                 | KOREA | 2018 |
| PURIFICATION<br>SYSTEM<br>정제 시스템                                                       | VESSEL / PIPING             | DUKSAN UMT               | KOREA | 2018 |
| GAS PURIFIER 정제기                                                                       |                             | LEADERS & GLOBAL         | KOREA | 2018 |

| NAME OF PROJECT                   | DESCRIPTION         | CLIENT                 | SITE   | YEAR |
|-----------------------------------|---------------------|------------------------|--------|------|
| 전해연마<br>오토클레이브                    | AUTOCLAVE           | SAMSUNG                | KOREA  | 2018 |
| PILOT SYSTEM                      | TOTAL               | WONIK MATERIALS        | KOREA  | 2018 |
| COGENT<br>PROCESS SCALE<br>SYSTEM | TOTAL               | WONIK MATERIALS        | KOREA  | 2018 |
| BIO PROCESS                       | REACTOR             | BIOZEEN                | INDIA  | 2018 |
| RETORT SYSTEM                     | AUTOCLAVE           | STERIFLOW              | FRANCE | 2018 |
| RETORT SYSTEM                     | AUTOCLAVE           | DTS                    | CHINA  | 2018 |
| BIO PROCESS                       | VESSEL / REACTOR    | PACOVSKE               | CZECH  | 2018 |
| SPECIAL H/EX.                     | SPIRAL H/EX.        | STYROLUTION            | FRANCE | 2018 |
| CURING OF<br>CONCRETE<br>SYSTEM   | AUTOCLAVE           | ANHUI JINMA            | CHINA  | 2018 |
| RO-COMP.<br>CALORIMETER           | VESSEL              | SAMSUNG                | KOREA  | 2019 |
| D-2 PROJECT                       | TOWER / H/EX.       | HYUNDAI                | KOREA  | 2019 |
| COALESCE FILTER<br>TEST BED       | TEST BED            | ADD (국방과학연구소)          | KOREA  | 2019 |
| LHE CRYOSTAT                      | LOW TEMP.VESSEL     | RISP<br>(중이온가속기구축사업단)  | KOREA  | 2019 |
| EGT SENSOR<br>TEST BED            | TEST BED            | KHNP(한국수력원자력)          | KOREA  | 2019 |
| EGT SENSOR<br>TEST BED            | TEST BED            | KHNP(한국수력원자력)          | KOREA  | 2019 |
| NEW P PLANT<br>PROJECT            | VESSEL(JACKET TYPE) | HITACHI                | JAPAN  | 2019 |
| JPTI#1 PROJECT                    | VESSEL / H/EX.      | IPC                    | KOREA  | 2019 |
| PF PROJECT                        | REACTOR             | SEKYUNG                | KOREA  | 2019 |
| AIR TANK                          | HEADER              | AVANSYS                |        | 2019 |
| SR RECOVERY                       | COLUMN / REBOILER   | DAEWOONG               | KOREA  | 2019 |
| ENCHEM POLAND<br>ELETROLYTE       | BIO TANK            | ENCHEM (POLAND)        | POLAND | 2019 |
| 35kW<br>REFORMING<br>SYSTEM       | TOTAL               | KR선급                   | KOREA  |      |
| PHC1 PROJECT                      | SILO                | HUVIS                  |        | 2019 |
| NEW PROJECT                       | CRT / VESSEL        | 세창화학                   | KOREA  | 2019 |
| NEO-3 PROJECT                     | TOWER               | HYOSUNG<br>CORPORATION | KOREA  | 2019 |
| 진천 신축공사                           | VESSEL / H/EX.      | CHEMTROS               | KOREA  | 2019 |
| 보톡스 원료 제조 공<br>정 설비 공사            | VESSEL              | BILL KOREA             | KOREA  | 2019 |
| 대기오염방지<br>시설공사                    | VESSEL              | ㈜진맥산업                  | KOREA  | 2019 |
| KIP-101                           | VESSEL              | 경인양행                   |        | 2019 |
|                                   | CRT                 | DONGWOO FINE-CHEM      |        |      |
| 발효사료 & 액상 미<br>생물 생산 플랜트          | REACTOR             | 충주축산농협                 | KOREA  | 2019 |

| NAME OF PROJECT                        | DESCRIPTION                   | CLIENT        | SITE       | YEAR | NAME OF PROJECT                    | DESCRIPTION                           | CLIENT                   | SITE       | YEAI |
|----------------------------------------|-------------------------------|---------------|------------|------|------------------------------------|---------------------------------------|--------------------------|------------|------|
| T-PROJECT                              | REACTOR / H/EX.               | CERES R&D     | KOREA      | 2019 | MFG-8 WuXi<br>SHIJIAZHUANG         | BIO TANK                              | WUXI BIOLOGICS           | CHINA      | 202  |
| NCK B2 PROJECT                         | VESSEL                        | NCK           | KOREA      | 2019 | FK3 PROJECT                        | VESSEL                                | HITACHI PLANT<br>SERVICE | JAPAN      | 202  |
| ACTIVATED CARBON<br>20L REACTOR SYSTEM | REACTOR                       | HI AIR KOREA  | KOREA      | 2019 | REACTOR SYSTEM                     | REACTOR / VESSEL / H/<br>EX.          | DONGYANG PNE             | KOREA      | 202  |
| MONOMER REACTOR<br>SYSTEM              | REACTOR                       | HANSOL        | KOREA      | 2019 | SR RECOVERY<br>PROJECT             | H/EX.                                 | DAEWOONG BIO             | KOREA      | 202  |
| REACTOR 12m³<br>SYSTEM                 | REACTOR / H/EX.               | 신성소재          | KOREA      | 2019 | PM1 CORRUGATING<br>MEDIUM<br>PAPER | VESSEL                                | 경산제지㈜                    | KOREA      | 2020 |
| 질소발생기<br>설치공사                          | VESSEL                        | 현대자동차-의왕 연구소  | KOREA      | 2019 | REACTOR SYSTEM                     | REACTOR / H/EX.                       | ㈜대원포리머                   | KOREA      | 2020 |
| 평택 수지공장 2차설비                           | VESSEL                        | JEVISCO       | KOREA      | 2019 | HONGIK PROJECT                     | REC.VESSEL                            | HONGIK                   | KOREA      | 2020 |
| PURIFICATION<br>VESSEL                 | VESSEL                        | 3C FRANCE     | FRANCE     | 2019 | 영창케미칼 4공장 증설<br>PROJECT            | VESSEL                                | 영창케미칼                    | KOREA      | 2020 |
| RETORT SYSTEM                          | AUTOCLAVE                     | CST           | CHINA      | 2019 | VERTICAL PLANETARY<br>MIXER        | MIXER VESSEL                          | HANWHA                   | KOREA      | 2020 |
| REACTOR SYSTEM                         | REACTORS & HEAT<br>EXCHANGER  | DAEDAL        | CHINA      | 2019 | CIP PROCESS                        | HEAT EXCHANGER<br>& CONDENSER         | YOOYOUNG<br>PHARMACY     | GERMANY    | 2020 |
| FERMENTAL SYSTEM                       | FERMENTAL VESSEL              | SATORIOUS     | GERMANY    | 2019 | STELIRIZER                         | AUTO CLAVE                            | JW PHARMACY              | FRANCE     | 2020 |
| FERMENTAL SYSTEM                       | FERMENTAL VESSEL              | SATORIOUS     | INDIA      | 2019 | AUTO CLAVE                         | AUTO CLAVE                            | INTERCONSTEK             | CHINA      | 2020 |
| CIP PROCESS                            | HEAT EXCHANGERS               | BOSH          | GERMANY    | 2019 | STEAM PEELER                       | STEAM PEELER<br>& ACCULULATOR         | JUNGWOO                  | NETHERLAND | 2020 |
| DRYER SYSTEM                           | DRYER                         | HAKO PLAN     | JAPAN      | 2019 | STELIRIZER                         | AUTO CLAVE                            | THEMATEK                 | GERMANY    | 2020 |
| REACTOR SYSTEM                         | REACTORS                      | HITACHI       | JAPAN      | 2019 | REACTOR                            | REACTOR &<br>CONDENSER                | SAMYANG BIO              | CHINA      | 2020 |
| RETORT SYSTEM                          | AUTOCLAVE                     | DFT           | GERMANY    | 2019 | HEAT EXCHANGER                     | HEAT EXCHANGER<br>& REACTANGLER CLAVE | JETEMA                   | SWEDEN     | 2020 |
| RETORT SYSTEM                          | AUTOCLAVE                     | STERIFLOW     | FRANCE     | 2019 | REACTOR                            | REACTOR &<br>CONDENSER                | SK CHEM                  | GERMANY    | 2020 |
| BIO PROCESS                            | CLEAN VESSEL                  | M-PRO TECH    | FRANCE     | 2019 | HEAT EXCHANGER                     | HEAT EXCHANGER<br>& CONDENSATE TANK   | TS TECH                  | CHINA      | 2020 |
| REACTOR SYSTEM                         | REACTORS & HEAT<br>EXCHANGER  | JINHEUNG      | CHINA      | 2019 | HEAT EXCHANGER                     | HEAT EXCHANGER<br>& STORAGE TANK      | KOREA UNITED<br>PHARMACY | CHINA      | 2020 |
| AUTO CLAVE                             | AUTO CLAVE                    | THEMATEC      | JAPAN      | 2019 | REACTOR                            | REACTOR                               | YAMAGEN                  | JAPAN      | 2020 |
| CIP PROCESS                            | HEAT EXCHANGERS               | TECH SOLUTION | CHINA      | 2019 | CHEMICAL TOWER                     | TOWER                                 | HANWHA E&C               | CHINA      | 2020 |
| FOOD SYSTEM                            | PEELER                        | JUNGWOO       | NETHERLAND | 2019 | UHT PROCESS                        | UHT                                   | SAMYOOK FOOD             | ITALY      | 2020 |
| HEAT PROCESS                           | HEAT EXCHANGER                | VEOLIA        | ITALIA     | 2019 | AUTO CLAVE                         | AUTO CLAVE                            | BINEX                    | AUSTRIA    | 2020 |
| DRYER SYSTEM                           | DRYER MACHINE                 | GEM-BIO       | JAPAN      | 2019 | BIO VESSEL                         | BIO JACKET VESSEL                     | SK BIO                   | KOREA      | 2020 |
| DRYER SYSTEM                           | DRYER MACHINE                 | GEM-BIO       | JAPAN      | 2019 | CHEMICAL PROCESS                   | EVAPORATOR                            | SAMYANG BIO              | KOREA      | 2020 |
| REACTOR SYSTEM                         | REACTORS & HEAT<br>EXCHANGER  | DOOYOUNG      | CHINA      | 2019 | FERMENTAL PROCESS                  | FERMENTAL VESSEL                      | LG CHEMICAL              | INDIA      | 2020 |
| AUTO CLAVE                             | AUTO CLAVE                    | INTERCONSTEC  | JAPAN      | 2019 | PHARMACY                           | STEAM GENERATOR                       | KOREA UNITED<br>PHARM.   | CHINA      | 2020 |
| CIP PROCESS                            | HEAT EXCHANGERS               | EKL           | FRANCE     | 2019 | SEPARATOR PROCESS                  | SEPARATOR                             | SAMSUNG BIO              | GERMANY    | 2020 |
| CIP PROCESS                            | HEAT EXCHANGER                | SUNGIL        | JAPAN      | 2019 | CHEMICAL PROCESS                   | EVAPORATOR                            | SAMYANG<br>INNOCHEM      | GERMANY    | 2020 |
| CIP PROCESS                            | HEAT EXCHANGER                | REYON         | GERMANY    | 2019 | FOOD PROCESS                       | инт                                   | SAMYOOK FOOD             | ITALY      | 2020 |
| CIP PROCESS                            | HEAT EXCHANGER<br>& CONDENSER | GREEN CROSS   | GERMANY    | 2019 | SCORPION PROJECT                   | VESSEL / REACTOR                      | UJL INC.                 | KOREA      | 2020 |

| NAME OF PROJECT                                      | DESCRIPTION             | CLIENT                            | SITE  | YEAR |
|------------------------------------------------------|-------------------------|-----------------------------------|-------|------|
| DEEP-SEA WIRE<br>TEST                                | AUTO CLAVE              | LS CABLE & SYSTEM<br>LTD.         | KOREA | 2020 |
| HIGH-PRESSURE &<br>TEMP-PROJECT                      | VESSEL                  | KNT                               | KOREA | 2020 |
| CHEMICAL<br>PRODUCT SYSTEM                           | REACTOR / VESSEL / H/EX | CCCE                              | KOREA | 2020 |
| CHEMICAL LINE<br>SYSTEM                              | CONDENSER               | DS CHEMSOL                        | KOREA | 2020 |
| BATTERY<br>METERIALS                                 | VESSEL                  | UMICORE                           | KOREA | 2020 |
| LSP PROJECT                                          | LSP REACTOR             | HUVIS                             | KOREA | 2020 |
| MAINTENANCE<br>SYSTEM                                | H/EX / VESSEL / PIPING  | SUWON<br>ENVIRONMENT<br>AGENCY    | KOREA | 2020 |
| FACTORY<br>EQUIPMENT SYSTEM                          | REACTOR / RETORT        | PEPTRON                           | KOREA | 2020 |
| PROCESS SYSTEM                                       | VESSEL                  | SUNGEEL HITECH                    | KOREA | 2020 |
| NEW PROCESS<br>PROJECT                               | C.R.T. / VESSEL         | JEVISCO                           | KOREA | 2020 |
| EDISON-3 PROJECT                                     | BIO-TANK / REACTOR      | SAMSUNG<br>BIOLOGICS              | KOREA | 2020 |
| FERMENTER LINE<br>PROJECT                            | FERMENTOR               | CJ CHEILJEDANG<br>CORP            | KOREA | 2020 |
| POLYMERIZATION<br>PROJECT                            | SILO                    | HUVIS                             | KOREA | 2020 |
| TEST EQUIPMENT                                       | VESSEL.                 | KIER                              | KOREA | 2020 |
| CEMENT PROJECT                                       | AIR HEADER              | HANIL CEMENT                      | KOREA | 2020 |
| PI 사업부 FACTORY<br>CONSTRUCTION<br>PROJECT            | VESSEL / REFLUX TANK    | DL E&C                            | KOREA | 2021 |
| GL PROJECT                                           | REACTOR                 | SUNGIL                            | CHINA | 2021 |
| RO-COMP PROJECT                                      | VESSEL                  | SAMSUNG<br>ELECTRONICS            | KOREA | 2021 |
| SLUDGE DRYING<br>FACILITY<br>INSTALLATION<br>PROJECT | DRYER / VESSEL          | SEOUL CITY                        |       | 2021 |
| BRP PROJECT                                          | AGING TANK / H/EX       | ECOPRO                            | KOREA | 2021 |
| CHEMICAL SYSTEM                                      | REACTOR / TANK          | SAKURANOMIYA<br>CHEMICAL          | KOREA |      |
|                                                      | VESSEL / COLLECTOR      | HYUNDAI SAMHO<br>HEAVY INDUSTRIES | KOREA |      |
| CHAMBER SYSTEM                                       | HEAT EXCHANGER          | BINEX                             | ITALY | 2021 |
| FERMENTER<br>SYSTEM                                  | FERMENTER VESSEL        | NOROO HOLDINGS                    | INDIA | 2021 |
| SMT VESSEL<br>PROJECT                                |                         | PI ADVENCED<br>MATERIALS          | KOREA | 2021 |
| N-PROJECT                                            | FEED GAS PRE-COOLER     | ТЕМС                              | KOREA | 2021 |
| SK PROJECT                                           | MIXER TANK              | ECELL                             | KOREA | 2021 |
| HELUIM SYSTEM                                        | VESSEL                  | JH ENG                            | KOREA | 2021 |
|                                                      |                         |                                   |       | 2021 |
| FILTER SYSTEM                                        | VESSEL                  | TOPS                              | KOREA | 2021 |

| NAME OF PROJECT                           | DESCRIPTION                       | CLIENT                         | SITE    | YEAI |
|-------------------------------------------|-----------------------------------|--------------------------------|---------|------|
| 6CM BAG FILTER<br>PROJECT                 | AIR HEADER                        | SAMPYO CEMENT                  | KOREA   | 202  |
| ASPHALT RUBBER<br>SYSTEM                  | HEAT EXCHANGER                    | POINIX                         | USA     | 202  |
| EDISON-PROJECT                            | BIO REACTOR / VESSEL              | SAMSUNG BIOLOGICS              | KOREA   | 202  |
| SPECIAL-<br>PROJECT                       | HEAT EXCHANGER /<br>COOLER        | TY PFAUDLER                    | GERMANY | 202  |
| SK PROJECT                                | MIXER TANK                        | ECELL                          | KOREA   | 202  |
| FOOD STERILIZER<br>SYSTEM                 | AUTO CLAVE                        | HARIM                          | GERMANY | 202  |
| SUI-PLANT<br>FILTER HOUSING<br>PROJECT    | FILTER HOUSING                    | AEKYUNG CHEMICAL               | KOREA   | 202  |
| KOLMAR<br>PROJECT                         | MIXER TANK                        | ECELL                          | KOREA   | 202  |
| WASTE WATER<br>BOILER SYSTEM              | BOILER PKG                        | SAMPYO CEMENT                  | CHINA   | 202  |
| DONGIN<br>CHEMICAL BUYEO<br>PLANT PROJECT | REACTOR / H/EX /<br>RECEIVER TANK | DONGIN CHEMICAL                | KOREA   | 202  |
| H2 SYSTEM                                 | ACCUMULATOR                       | DOOSAN FUELCELL                | CANADA  | 202  |
| 150HP<br>DISSOLVER<br>PROJECT             | BUCKET STRAINER                   | DAEKWANG<br>HIGHPOLYMER        | KOREA   | 202  |
| DISTILLATION<br>SYSTEM                    | HEAT EXCHANGER                    | EYON PHARM.                    | GERMANY | 202  |
| H2 COLUMN<br>SYSTEM                       | COLUMN / TANK                     | DAEJOO ELECTRONIC<br>MATERIALS | KOREA   | 202  |
| NA50 PROJECT                              | REACTOR                           | ANP CORP.                      | KOREA   | 202  |
| DISTILLATION<br>SYSTEM                    | HEAT EXCHANGER                    | вмі                            | GERMANY | 202  |
| EVAPORATOR<br>SYSTEM                      | VESSEL                            | THE O FOUR                     | ITALY   | 202  |
| BIO PROJECT                               | WATER TANK                        | SAMSUNG BIO                    | GERMANY | 202  |
| PROJECT                                   | FILTER HOUSING                    | ECOPRO INNOVATION              | KOREA   | 202  |
| ASPHALT RUBBER<br>SYSTEM                  |                                   | POINIX                         | USA     | 202  |
| DISTILLATION<br>SYSTEM                    |                                   | HUONS                          | GERMANY | 202  |
| N2 CHEMICAL                               | TANK                              | KUMHO<br>PETROCHEMICAL         |         | 202  |
|                                           | JACKET VESSEL                     | CELLTRION                      | KOREA   | 202  |
| DISTILLATION<br>SYSTEM                    | HEAT EXCHANGER                    | DONG-A                         | GERMANY | 202  |
| AHF SYSTEM                                |                                   | ENF TECHNOLOGY                 | CHINA   |      |
| 100ML PROJECT                             | VESSEL                            | KUMHO<br>PETROCHEMICAL         | KOREA   | 202  |
| STEAM CONCRET<br>SYSTEM                   |                                   | GIANT                          |         | 202  |
| C-2 PROJECT                               | REACTOR / VESSEL                  | HYOSUNG                        | KOREA   | 202  |
|                                           | BIO REACTOR / TANK                | DAEWON HEALTHCARE              | KOREA   | 202  |
| BIO PROJECT                               | WATER TANK                        | SAMSUNG BIO                    | GERMANY |      |
| QR01 PROJECT                              | VESSEL                            | HANMI                          | KOREA   | 202  |

|                                                    |                                   |                              | 0175    | VELD |
|----------------------------------------------------|-----------------------------------|------------------------------|---------|------|
| NAME OF PROJECT                                    | DESCRIPTION                       | CLIENT                       | SITE    | YEAR |
| SEMI-CONDUCTOR<br>SYSTEM                           | REACTOR                           | NCK                          | JAPAN   | 2021 |
| N2 PKG SYSTEM                                      | VESSEL                            | CARTOOLS                     | CHINA   | 2021 |
| HIGH PRESSURE<br>REACTOR 200L<br>PROJECT           | REACTOR                           | CHEMTROS                     | KOREA   | 2021 |
| AIR COMPRESSOR<br>PKG                              | AIR RECEIVER TANK                 | BINGGRAE                     | KOREA   | 2021 |
| SMELTING PROCESS<br>PROJECT                        | TOTAL SYSTEM                      | KIGAM                        | KOREA   | 2021 |
| QR02 PROJECT                                       | BIO VESSEL                        | CELLTRION                    | KOREA   | 2021 |
| FORM SPONGE<br>SYSTEM                              | REACTOR                           | KM&I                         | GERMANY | 2021 |
| N-PROJECT                                          | BUFFER TANK                       | ТЕМС                         | KOREA   | 2021 |
| DISTILLATION<br>SYSTEM                             | HEAT EXCHANGER                    | HONEX                        | CHINA   | 2021 |
| SK PROJECT                                         | MIXER TANK                        | SK BIO                       | KOREA   | 2021 |
| NMP PURIFICATION<br>SYSTEM                         | TOWER / VESSEL /<br>H/EX          | KOKAM                        | KOREA   | 2021 |
| DANGJIN THERMAL<br>POWER 1-4 PROJECT               | REACTOR / H/EX                    | KOREA EAST-WEST<br>POWER     | KOREA   | 2021 |
| WASTE WATER<br>BOILER SYSTEM                       | BOILER                            | NONGSHIM                     | CHINA   | 2021 |
| EC05 PROJECT                                       | BIO VESSEL                        | CELLTRION                    | KOREA   | 2021 |
| FOOD STERILIZER<br>SYSTEM                          | AUTO CLAVE                        | LOTTE FOOD                   | FRANCE  | 2021 |
| REACTOR SYSTEM                                     | REACTOR / H/EX                    | DS CHEMSOL                   | KOREA   | 2021 |
| FERMENTER SYSTEM                                   | FERMENTER VESSEL                  | INTRON                       | GERMANY | 2021 |
| EC010 PROJECT                                      | BIO VESSEL                        | CELLTRION                    | KOREA   | 2021 |
| PLASTIC<br>PRODUCTION<br>SYSTEM                    | HEAT EXCHANGER                    | INEOS                        | GERMANY | 2021 |
| PG-4 PROJECT                                       | REACTOR / VARNISH<br>TANK         | PI ADVENCED<br>MATERIALS     | KOREA   | 2021 |
| DISTILI ATION                                      | HEAT EXCHANGER                    | JANSSEN                      | GERMANY | 2021 |
| EDISON IV PROJECT                                  | BIO REACTOR                       | SAMSUNG<br>BIOLOGICS         | KOREA   | 2021 |
| WASTE INCINERATION<br>FACILITY PROJECT             | AIR PREHEATER                     | JEJU PROVINCE<br>DEVELOPMENT | KOREA   | 2021 |
| CMDL PLANT<br>EXPANSION<br>CONSTRUCTION<br>PROJECT | REACTOR / H/EX /<br>RECEIVER TANK | CMDL                         | KOREA   | 2021 |
| SYSTEM                                             | VESSEL                            | KOREA UNITED<br>PHARM        | CHINA   | 2022 |
|                                                    | CONE                              | POSCO                        | KOREA   | 2022 |
| SHIPPING PIPING<br>PROJECT                         | PIPING / TANK                     | POINIX INC.                  | KOREA   | 2022 |
| FERMENTER SYSTEM                                   | VESSEL                            | KNBS                         | USA     | 2022 |
| CHEMICAL SYSTEM                                    | VESSEL / TANK                     | DONG-A PHARM                 | KOREA   | 2022 |
| T-PROJECT                                          | CONDENSER /<br>SEPARATOR          | DONGSUNG<br>CHEMICAL         | KOREA   | 2022 |
| REACTOR SYSTEM                                     | VESSEL                            | MI PHARM                     | CHINA   | 2022 |

| NAME OF PROJECT                          | DESCRIPTION                         | CLIENT                          | SITE        | YEAR |
|------------------------------------------|-------------------------------------|---------------------------------|-------------|------|
| FOOD STERILIZER<br>SYSTEM                | VESSEL                              | CJ FOOD                         | USA         | 2022 |
| V-PROJECT                                | STORAGE TANK                        | KTL                             | KOREA       | 2022 |
| H2 PSA SYSTEM<br>PROJECT                 | ADSORBER COLUMN /<br>TANK           | EN2CORE TECH                    | KOREA       | 2022 |
| UHT PKG SYSTEM                           | VESSEL                              | SAMYANG<br>HOLDINGS             | GERMANY     | 2022 |
| VACUUM SYSTEM                            | VESSEL                              | KOREA LOST WAX                  | USA         | 2022 |
| BIO SYSTEM                               | FILTER HOUSING /<br>VESSEL          | KUKDO CHEMICAL                  | KOREA       | 2022 |
| OIL PURICATION<br>SYSTEM                 | TUBE CLUSTER                        | S-OIL                           | TAIWAN      | 2022 |
| WASTE WATER<br>FILTERING SYSTEM          | HEAT EXCHANGER                      | THE O FOUR                      | ITALY       | 2022 |
| SOLBRAIN PROJECT                         | VESSEL / RECOVERY<br>TANK           | SOLBRAIN                        | KOREA       | 2022 |
| BIO PROJECT                              | BIO REACTOR                         | CELLTRION                       | KOREA       | 2022 |
| STEAM PJG SYSTEM                         | VESSEL                              | FROM BIO                        | GERMANY     | 2022 |
| UHT PJG SYSTEM                           | HEAT EXCHANGER                      | SAMYANG<br>HOLDINGS             | GERMANY     | 2022 |
| H1 PROJECT                               | HEAT EXCHANGER                      | ТЕМС                            | KOREA       | 2022 |
| H/EX MANUFACTURE<br>PROJECT              | HEAT EXCHANGER                      | WELCRON HANTEC                  | KOREA       | 2022 |
| VACUUM COOLING<br>SYSTEM                 | AUTO CLAVE                          | SHIMADZU                        | CHINA       | 2022 |
| E4-PROJECT                               | C.R.T.                              | HYOSUNG<br>CHEMICAL             | KOREA       | 2022 |
| STS316L REACTOR<br>SYSTEM                | REACTOR / H/EX /<br>RECEIVER TANK   | CHEMTROS                        | KOREA       | 2022 |
| CMDL PLANT<br>EXPANSION<br>CONSTRUCTION  | REACTOR / H/EX                      | CMDL                            | KOREA       | 2022 |
| LG PROJECT                               | MIXING TANK / VESSEL                | LG ENERGY<br>SOLUTION           | GERMANY     | 2022 |
| CHEMICAL SYSTEM                          | VESSEL                              | KUMHO MITSUI<br>CHEMICALS, INC. | KOREA       | 2022 |
| AIR FILTER PROJECT                       | FILTER HOUSING                      | SAMSUNG DISPLAY                 | KOREA       | 2022 |
| DISTILLATION SYSTEM                      | HEAT EXCHANGER                      | STGEN BIO                       | GERMANY     | 2022 |
| REACTOR SYSTEM                           | REACTOR                             | LG CHEM                         | SWITZERLAND | 2022 |
| STS304 PROJECT                           | HOT OIL TANK /<br>RECEIVER TANK     | CHEMTROS                        | KOREA       | 2022 |
|                                          | BUFFER PREP TANK /<br>BIOREACTOR    | CELLTRION                       |             | 2022 |
| KIA MOTORS<br>HARDENER TANK<br>PROJECT   | STORAGE TANK                        | KIA CORP                        | KOREA       | 2022 |
| DISTILLATION SYSTEM                      | HEAT EXCHANGER                      | DM BIO                          | GERMANY     | 2022 |
| SINGLE USE MIXER<br>SYSTEM               | DOUBLE JACKET<br>VESSEL             | DONG-A PHARM                    | KOREA       | 2022 |
| REACTOR PROJECT                          | VESSEL / TANK / DRUM /<br>SEPARATOR | META BIOMED                     | KOREA       | 2022 |
| DISTILLATION SYSTEM                      | HEAT EXCHANGER                      | RF BIO                          | GERMANY     | 2022 |
| DAEJEON PLANT<br>CONSTRUCTION<br>PROJECT | REACTOR / H/EX /<br>RECEIVER TANK   | DONGYANG                        | KOREA       | 2022 |

| NAME OF PROJECT                             | DESCRIPTION                    | CLIENT                         | SITE    | YEAR |
|---------------------------------------------|--------------------------------|--------------------------------|---------|------|
| PG5 PROJECT                                 | REACTOR                        | PI ADVANCED<br>MATERIALS       | KOREA   | 2022 |
| DISTILLATION<br>SYSTEM                      | STERILIZER                     | BINEX                          | AUSTRIA | 2022 |
| MDI PLANT<br>PROJECT                        | VESSEL                         | KUMHO MITSUI<br>CHEMICALS CORP | KOREA   | 2022 |
| HEAT EXCHANGER<br>SYSTEM                    | HEAT EXCHANGER                 | METHISON GAS                   | USA     | 2022 |
| CO2 PSA SYSTEM<br>PROJECT                   | STRUCTURE / PIPING /<br>VESSEL | HYUNDAI ROTEM                  | KOREA   | 2022 |
| LITHIUM SYSTEM                              | VESSEL                         | POSCO HOLDINGS                 | GERMANY | 2022 |
| BIO PROJECT                                 | BIO REACTOR / STORAGE<br>TANK  | CELLTRION                      | KOREA   | 2022 |
| LGESOC2 1P<br>PROJECT                       | COOLER / REBOILER / H/<br>EX   | LG ENERGY<br>SOLUTION          | KOREA   | 2022 |
| HSPP PROJECT                                | REACTOR / VESSEL               | P&O CHEMICAL                   | KOREA   | 2022 |
| MH-PROJECT                                  | C.R.T.                         | KUKDO CHEMICAL                 | KOREA   | 2022 |
| EPOXY PILOT<br>INSTALLATION<br>PROJECT      | VESSEL                         | KUMHO P&B<br>CHEMICALS         | KOREA   | 2022 |
| POSCO<br>CONTINENTAL                        | VESSEL                         | POSCO HOLDINGS                 | GERMANY | 2022 |
| WASTEWATER<br>TREATMENT<br>FACILITY PROJECT | VESSEL                         | HYUNDAI STEEL                  | KOREA   | 2022 |
| PITK PROJECT                                | REACTOR / VEESEL               | DAEWON<br>PHARMACEUTICAL       | KOREA   | 2022 |
| NORTHVOLT D.S-3                             | BINDER MIXER / STORAGE<br>TANK | NORTHVOLT                      | KOREA   | 2022 |
| POLY-E PROJECT                              | VESSEL / FILTER<br>HOUSING     | SOLBRAIN                       | KOREA   | 2022 |
| OXO RTO-PROJECT                             | RTO / STACK                    | LG CHEMICAL                    | KOREA   | 2022 |
| BIO PROJECT                                 | BIO VESSEL                     | SAMSUNG<br>BIOLOGICS           | KOREA   | 2022 |
| DRYER PKG SYSTEM                            | VESSEL                         | TAEKWANG                       | JAPAN   | 2022 |
| POSCO LITHIUM<br>SOULTION                   | HEAT EXCHANGER                 | POSCO HOLDINGS                 | GERMANY | 2022 |
| T20 PROJECT                                 | REACTOR                        | LG CHEM.                       | KOREA   | 2022 |
|                                             |                                | KIER                           |         | 2022 |
| J-PROJECT                                   | VESSEL                         | KIER                           | KOREA   | 2022 |
| LINE-PROJECT                                | AIR FLOTATION                  | LOTTE CHEMICAL                 | KOREA   | 2022 |
| OCI STC PROJECT                             | REACTOR / H/EX                 | осі                            | KOREA   | 2022 |
| POLYMER PROJECT                             | STORAGE TANK                   | LG CHEMICAL                    |         | 2022 |
| V.E. PROJECT                                | WATER COOLER                   | LOTTE CHEMICAL                 | KOREA   | 2022 |
| DUST PNEUMATIC<br>CONVEYING SYSTEM          | TANK / VESSEL                  | POSCO                          | KOREA   | 2022 |
| VAPOR BOILER<br>SYSTEM                      | BOILER                         | SAMSHIN                        | USA     | 2022 |
| DISTILLATION<br>SYSTEM                      | HEAT EXCHANGER                 | DONG-A PHARM.                  | GERMANY | 2022 |
| PISTON PRESSURE<br>VESSEL                   | VESSEL                         | SK GEO CENTRIC                 | KOREA   | 2022 |
|                                             | STORAGE TANK                   | SOLBRAIN                       |         | 2022 |

| NAME OF PROJECT                         | DESCRIPTION                   | CLIENT                    | SITE    | YEAR |
|-----------------------------------------|-------------------------------|---------------------------|---------|------|
| EDISON PROJECT                          | BIO REACTOR                   | SAMSUNG BIOLOGICS         | KOREA   | 2023 |
| AU PROJECT                              | AUTOCLAVE / H/EX              | CIS CHEMICAL              | KOREA   | 2023 |
| STEAM COOKER<br>SYSTEM                  | VESSEL                        | KAJIWARA                  | JAPAN   | 2023 |
| STEAM BOILER<br>PKG                     | STEAM BOILER                  | KBR                       | USA     | 2023 |
| T1 PROJECT                              | EVAPORATOR                    | LG CHEM                   | KOREA   | 2023 |
| GWANGJU<br>SAMSUNG<br>PROJECT           | AIR HEADER                    | SAMSUNG ELECTRONICS       | KOREA   | 2023 |
| REACTOR<br>SYSTEM                       | REACTOR                       | CMDL                      | KOREA   | 2023 |
| BIO PROJECT                             | HOLD VESSEL                   | SAMSUNG BIOLOGICS         | KOREA   | 2023 |
| UHT SYSTEM                              | HEAT EXCHANGER                | GEA TDS                   | GERMANY | 2023 |
| CHEMICAL<br>SYSTEM                      | VESSEL                        | MIWON CHEM                | USA     | 2023 |
| BPA POWDER<br>PROJECT                   | TRANSPORTER                   | KUMHO P&B CHEMICALS       | KOREA   | 2023 |
| QL-PROJECT                              | C.R.T.                        | CHEMTRONICS               | KOREA   | 2023 |
| CHEMICAL<br>PROCESS                     | DRYER                         | CIS CHEMICAL              | GERMANY | 2023 |
| VESSEL PROJECT                          | H/EX / AUTOCLAVE /<br>REACTOR | HUMEDIX                   | KOREA   | 2023 |
| LITHIUM SYSTEM                          | VESSEL                        | POSCO                     | ITALY   | 2023 |
| LITHIUM SYSTEM                          | VESSEL                        | SUNGIL HITEK              | CHINA   | 2023 |
| DISTILLATION<br>SYSTEM                  | HEAT EXCHANGER                | STGEN BIO                 | GERMANY | 2023 |
| DS-1 PROJECT                            |                               | NORTHVOLT                 | KOREA   | 2023 |
| SEJONG PLANT<br>PROJECT                 | VESSEL                        | KCC GLASS CORP            | KOREA   | 2023 |
| CHEMICVI                                |                               | HOSOKAWA                  | JAPAN   | 2023 |
| SYSIEM                                  | EVAPORATOR                    | WUXI LIMA                 | CHINA   | 2023 |
| LITHIUM SYSTEM                          |                               | POSCO                     | TURKIYE |      |
| BIO PROJECT                             |                               | DAEWON<br>PHARMACEUTICAL  | KOREA   | 2023 |
| GLASS FIBER<br>NO.2 PROJECT             | VESSEL                        | KCC GLASS CORP            | KOREA   | 2023 |
| INSTALLATION<br>OF USER TANK<br>PROJECT | C.R.1.                        | KUMHO MITSUI<br>CHEMICALS |         | 2023 |
| BOILER SYSTEM                           | BOILER                        | ENDORFF                   | USA     | 2023 |
|                                         | TOWER / DEACTOR /             | ENF TECHNOLOGY            | KOREA   | 2023 |
|                                         | VESSEL                        | TDS                       | GERMANY | 2023 |
| CHEMICAL<br>PROCESS                     | STEAM HEADER                  | CIS CHEMICAL              | KOREA   | 2023 |
| REACTOR<br>SYSTEM                       | REACTOR                       | CHEMTROS                  | KOREA   | 2023 |
| A-PROJECT                               | VESSEL / MIXER / DRUM         | SAMSUNG SDI               | KOREA   | 2023 |

# SEOH ECH





English Web Site

Korean Web Site



# **Bundang Center**

3109, A tower, 177, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea

# **Daejeon Center**

283, Motgol-ro, Chubu-myeon, Geumsan-gun, Chungcheongnam-do, Republic of Korea

# **Hwaseong Center**

347-15, Noha-gil, Paltan-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea

# **Siheung Center**

 $31\mbox{-}316$  , 204, Gongdan  $1\mbox{-}daero,$  Siheung-si, Gyeonggi-do, Republic of Korea

**MOBILE** +82-10-5796-2389 / +82-10-7760-6176 **OFFICE** +82-31)703-0480 **FAX** +82-31)703-0481

**E-MAIL** septech@septech.co.kr **WEB SITE** http://seplant.com